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ABSTRACT
Jof 27>

A formula for the impedance of a short, cylindrical dipole in a
magnetoplasma is derived using quasi-static electromagnetic theory. The
formula is valid in a lossy plasma and for any dipole orientation with
respect to the magnetic field, It is shown that the quasi-static theory
can be interpreted in terms of scaled coordinates and that a cylindrical
dipole in a magnetoplasma has a free space equivalent with a distorted
shape, The dipole impedance is found to have a positive real part under
lossless conditions when the quasi-static differential equation is hyper-
bolic; this indicates that the quasi-static theory predicts a form of
radiation. The effects of plasma wave excitation and various assumed
Current distributions are discussed, Laboratory measurements of monopole

impedance are found to agree fairly well with the theoretical calculations,
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1, INTRODUCTION

When an antenna is immersed in some medium, knowledge of its impedance
is important whether the antenna is regarded as part of a communications
system or as a probe for studying the properties of the medium. For the
former application, energy refléction from the antenna must be minimized
and for the latter, the relationship between impedance and medium properties
must be well established, The foregoing statements apply especially to
rocket and satellite exploration of the ionosphere and also to plasma
diagnostics 1in the laboratory., For these reasons it was decided to study
both theoretically and experimentally the impedance of a short cylindrical
dipole antenna immersed in a magnetoplasma, Only linear (low RF level)

ey
" phenomena will be discussed in this report,

The analysis is limited to short antennas (short compared to a wave-
length) in order to avoid the problem of obtaining theoretically tﬁé antenna
current distributions, If the antenna is short enoughy the current may
be assumed to vary linearly from a maximum at the center to zero at both
ends, Furthermore a shor* antenna may be conveniently analyzed using
quasi-static electromagnetic theory, a method which (in free space at
least) gives good impedance results but does not predict radiation, 'In
this report the quasi-static theory 1s derived by means of a low fre-
quency approximation and is used to calculate dipole impedance for any
orientation of the dipole with respect to the steady magnetic field,
Furthermore it is shown that the ficrst near field term of Mittra and

Deschamp§ is the quasi-static field,
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Laboratory impedance measurements also are simplified by limiting
the experimentation to short antennas, Since a short antenna radiates
little energy, the reflection of this energy from nearby obstacles has
negligible effect on the impedance, This 1is especially important when
the antenna is immersed in a laboratory plasma because the walls of the
plasma container must necessarily be close to the antenna, The measure-
ments to be described were performed on a monopole antenna having a length
of approximately a twentieth of a free space wavelength and inserted in
the end of a cylindrical glass discharge tube, For experimental conven=-
ience, measurements are limited to the case in which the steady magnetic
field is parallel to the monopole axis, The impedance measurements agree
reasonably well with the quasi=~static theoretical predictions,

An unexpected result of the quasi-static theory is the prediction of
radiation which occurs when the quasi-static differential equation is
hyperbolic, The effect of this radiation on impedance is not only pre-
dicted theoretically but also detected experimentally, Electromagnetic
effects such as radiation were not expected because, in free space, a
quasi-static (irrotational) electric field cannot induce a magnetic field,
In a :magnetoplasma, however, the electric field does induce a magnetic
field and radiation can take place,

The validity of the theoretical model is examined from several view=-
points, An impedance correction is computed, using a second order term
arising in the derivation of the quasi-static field theory, The problem
of the influence of the assumed current distribution is treated by com=-

puting the effects of two different current distributions, 1In addition,

8
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the effect of the excitation of longitudinal plasma waves is computed
for the isotropic case, However, as far as the laboratory experiment is
concerned these corrections are of negligible importance compared to the
problem of non-uniform electron density resulting from plasma diffusion
to the antenna surface and to the container walls, The magnitude of
this effect is estimated by calculating the impedance of a non-uniform,
isotropic plasma between parallel conducting pldtes.

There are relatively few published papers dealing with the impedance
of antennas in anisotropic media, Kononov et al,2 have applied quasi-
static theory to the problem of an infinitesimal dipole but their field
and impedance expressions differ with those in this report due to their
choice of an integration contour, Katzin and Katzin? have derived an
impedance formula for longer dipoles but a great deal of'numerical inte-~
gration would be necessary to extract impedancevvalues from their formula,
Whale* has discussed some aspects of the problem, including the effect of
plasma wave excitation on radiation resistance, Bramley5 has obtained an

impedance expression valid for low electron density or weak magnetic field

Kaiser® has observed a real part in the input impedance of a biconical

dipole but he beliéves this to be the result of energy storage rather than
radiation,

Some papers on related topics should be mentioned for the sake of
completeness, The impedance of antennas inlconducting, isotropic media
has been studied by King and Harrison’ and also by Deschamps8 whose
iﬁpedance relation is particularly simple and useful. Quasi-static theory
has been applied to propagation problems in plasmas by Trivelpiece and

11,12
Gould9 and in ferrites by Trivelpiece et al,10 and several other authors,

9




A thorough discussion of source problems in isotropic, warm plasma has

been presented by Cohen'? in a series of three articles,
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2., THE QUASI-STATIC THEORY FOR A SHORT DIPOLE ANTENNA
IN A MAGNETOPLASMA

2,1 Derivation of the Basic Equations

In a plasma with a z- directed DC magnetic field, Maxwell's equations

are

VxH=Jw€KE+J (2.1.1)

VXE=-j wu_ H (2.1.2)

The relative permittivity tensor K is

K 3K 0
14 [
K = -3K K 0 (2.1.3)
0 0 K
o
X
in which K = 1 - =
o U
: X
K = 1 - -jl
2yl
"
K = X Y
i -y?

11

;
;
;
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2 2
N

N w2 e
‘ = m€

2 S
w B
_H )
w H™ nm

Vv = collision frequency
electron density

DC magnetic flux density

angular frequency of signal source

magnitude of electron charge

electron mass

permittivity of free space = (367 x 10°)7! £d./m.
permeability of free space = 4T x 10-7 hy./m,

27

w
W € = = = :
Jpo o p X; free space propagation cqnstant

velocity of light in a vacuum
free space wavelength

S, units (rationalized) are used throughout,

The impedance analysis of an antenna requires knowledge of its near

field, If all the dimensions of the antenna are small compared to a

wavelength, the use of an approximate near field theory is indicated in

order to simplify the otherwise complicated calculations, Such an

approximate theory can be obtained by first formulating general near

field expressions and then letting the antenna dimensions become very

small in terms of wavelengths, An equivalent process involves letting the

12




frequency become arbitrarily small while maintaining the antenna size
and the properties of the medium constant (i.e., the dispersive nature
of the medium is not considered). This low frequency limit is employed
in the following paragraphs to derive quasi-static expressions for the
electric field, the magnetic field and Poynting's theorem,
The first step is to obtain a general field formulation valid for
electromagnetic problems in a -agnetprasma. It is desired to derive
E and H from a pair of potentials chosen in such a manner as to display
the quasi-static electric field as a distinct part of the total electric
field., The total electric field can be expressed in terms of a scalar
potential Y and a vector potential K,
E=-V¢y-jwi (2,1.4)
Substitution of Equation (2,1.4) in Equation (2.1.2) gives’
poﬁ.——VxK (2.1.5)
The above two relations, together with Egation (2.1.1) give
.';;
vxvxK-k02x’K:-proeowi-ppoJ (2.1,6)

13
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Operation on Equation (2,1,6) with the divergence operator gives
VKV Y+ JwTKAE= YL (2.1.7)
Jwe
o
This equation can be simplified by introducing the following restriction
on A :
VKA =0 (2.1.8)

This is a modification of the Coulomb gauge condition and 1s discussed in

the Appendix, . Equation (2.1,7) becomes
v-3J
VEVY = (2.1.9)

This differential equation can be used to obtain the potential § due to a
current density J. 1If q is the charge density, the equation of continuity

V3T + J w q=0) puts Equation (2.1,9) into the form

VKV Y = - % (2.1.10)
0

*
which may be regarded as a modified Poisson's equation. A complete
solution for all the fields would involve solving Equation (2.1,9) or

Equation (2.1.10) for {, substituting ¢ in Equation (2.1,6) and solving

* Equation (2,1.10) is widely used and is the quasi-static differential
equation for the scalar potential V,




*

for A, Expressions for E and H could then be derived using Equations

(2.1.4) and (2.1.5).

Solution of the above equations can be facilitated by the use of

spatial Fourier transforms, A transform will be indicated with a wavy

line ( ~ ) and the transform variables will be represented by the vector

k. Transformation of Equation (2.1.6) gives

=
>t
1
€
g =
™
=
=1
€
+
x
i

where

~M =k kX + koz K.

Transformation of Equation (2.1.9) gives

i
=1l
=il
=1

Substitution of Equation (2,1,12) in Equation (2.1.11) gives

>
it
F
=
bt
[
=1
N °
w1
luR
+
i

15
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(2.1.13)
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The electric field E can be expressed in terms of the potentials
and consequently in terms of the current density J by transforming
Equation (2.1.4):
§=-3(§¢+wz) (2.1.14)

Similarly, transformation of Equation (2,1,5) gives an expression for
the magnetic field:

A (2.1.15)

H= 4o kX
I'&0

Thus the electric and magnetic fields can be expressed in terms of a
scalar potential and a vector potential which can be derived from the
source current in a straightforward manner, The gauge condition on the
potentials i1s chosen so that the scalar potential y satisfies the relatively
simple quasi-static differential equation,

An examination of the equations in the preceding paragraph suggests
that some simplification may result if % and ? are each separated into

two parts as follows:

mil
1
=i
+
it

(2.1.186)

it
]
ol
+
it
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in whic

bz 7ol 0 Bla -y Eﬁ@ R S S R S RS B R P MR
0
~ 31 ) 3
= o
E =« jwaA
1
i A ] - :;_‘ H
= KEKk_-3J
J =
k * Kk
i ; P
7 =7- K_k k '__J (2.1.17)
1 k- KXk
1 4, il ) i Lo sbe 4 E Sioomn ! :
s {3 i 3 . I it ' v obitne ut i
L B R POUE NS T O S IV T SIS N T TS RN BTSN ¢ BN S RS PEIL RS0 B0 AR PN S B “x A
Th,efpll,'oyi?g ;gla,‘,}gm ,may; bgdeducedre,adily;'\ IR EEEYES | o i ERS ] 1A
[ £ H
kXK ! 30 =0 (2.1.18)

k ° 31 =0 (2.1.19)

7&; . R o - R AR IR A U [ Y

i
E;is clearly a transverse vector, However it is not the entire transverse
part of the current aeﬁsipy sinééiﬁhéﬁothérupart'so is not longitudinal;
- t~3
rather, K 1 Jo is longitudinal, Equation (2,1,13) for the vector potential

0 oy it mOr

ok or
becomes
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Equations (2.1,20), (2.1,14) and (2.1,12) permit the two parts of E to
be expressed as
Eo = 5%- K Jo (2.1.21)
o
El ==JWpu M131 (2.1,22)

Equation (2.1,18) shows that Eo is a longitudinal vector, However it is
not the entire longitudinal part of § sipce in generél X - El # 0, Rather
K El is transverse, a fact which may be deduced from the gauge condition,
An expression for the magnetic field follows from Equations (2,1,20) and

(2.1.15), It is

ot 1 =
H=J kxM J1 (2.1.23)

from which X = k02 Ml kX (2.1.24)

Substitution of Equation (2,1,24) in Equation (2,1.13) gives

18
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= 1 Ek-3 - =
A= k- d L W3 (2.1.25)
€ k- KKk °
o)
from which
H=jkxM?* J (2.1.26)
A comparison of Equation (2.1,26) with Equation (2.1.23) leads to the
conclusion that
kxM'3 =0 (2.1,27)

The decomposition of the current density into two parts ( a procedure
suggested by Professor G, A, Deschamps) evidently simplifies the equations
considérablyo Furthermore it is clear that ES is derived entirely from
30 and that both El and H are derived entirely from 3;. Similarly ¢ and

A are derived from.-jo and 3; respectively, Thus the entire field pro-

blem has been divided into two distinct halves, one with the source J°

and the other with the source 3&. Although‘ﬁ may be confined to a finite

region in space, 36 and 3; both exist outside that region,.

The theory developed above does not use any approximations and is
valid as long as the constant permittivity tensor K is a valid representa-
tion for the properties of the medium, However, tﬁe near field analysis

of a short antenna can be simplified greatly by the use of a low frequency

approximation to the general theory, Since ko is a parameter proportional

19




to frequency, the low frequency approximation can be effected by letting
k0 approach zero, As discussed before, the low frequency approximation
is not applied to the elements of the permittivity tensor K; that is,
the elements of K are to be considered fixed as ko approaches zero, It
will be shown that the first term of the approximation gives an electric
field equal to Eo (the quasi-static electric field), Furthermore it will
be shown that the low frequency approximation gives a magnetic field
consisting of two parts, One part is the familiar magnetic field obtain=-
able from the DC form of Ampere's law and the other part is an induced
magnetic field which is non-zero only in an anisotropic medium,

The low frequency approximation (the limit as k02 approaches zero)
can now be applied to the vector potential i. Equation (2.1.25) shows

~

that A can be expressed as follows:

~ % k . = -
As —2keJd oMty
WP EX KX °
0]
oy T3 - =
_ o ..____Ek f +k02 M3 (2.1.28)
kf) k- KXk

If the rectangular components of k are kl’ k k then the matrix M is

2’ 8’

20
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— » " 7]
2, k- ! -k k - & K -k k
kz“’L ks kzo K 12 J o 13
1] 2 ]
M=|-k k + jk 2K K+ i®- k K -k k (2.1.29)
1 2 o 1 3 o 2 3
-k k -k k K -1 K
12 23 1 2 o
L .
The inverse of M can be expressed as M* = g
'
N « N +k N
= e ——— . ,°?5L (2.1,30)
i (3o k‘:b % o)

in which D is the determinant of M, In order to conslider the low frequency
limit, it is necessary to know the scalars a, b, c and the matrices

o

No’ Nl’ N2° They are

a=-(k’+k’+k2)[x'(k2+k’)+x kz]
1 2 3 1 2 o 3

- k°*Kk (2.1.31)

il

21
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o'
il

t L []
(K2-K2) (% + K2) + K K (&K + %k + 2 &) (2.1.32)
1 3 o 1 2 3

O
= = det K
e 1
K2 k k k k
1 1 2 1 3
e Vo
N = (k% + K + k) k k K2 K k
o) 1 2 3 12 2 2 3
1 3 2 3 3
e
- - s
=K k k, (2,1,33)
~, 2 2 2 2 11 2 2 ] " I
K (k“4k°)+K (k*“4k®) K k k ~jK (k“4k°) Kk k -jKk k
1 2 o 1 K] 01 2 1 2 13 2 38

"

" [ ?
K k k + JK (&%+ k) K (K +k2)+K (k*+k®) Kk k +jK k k | (2.1.34)
o1 2 1 2 1 2 o 2 3 2 3 1 3

(] "
Kk k +jK k k ' - !

1 3‘j 2 3 Kk k-jKk k K (kK2+k%+ 2K2)

2 3 13 12 3

.

—
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[~ ¢ " -
K -3K 0
" t
N =
= Ko | IK K 0 (2.1.35)
* "
2
0 0 K -k?
L ° _

fnd “0 No 2 - =

A= |- 24 N? J (2.1.36)
kz a o
o

N
-(+klc) =2+ N 4 k2 N -
L 2 J (2.1.37)

=
° a+ kX ba K c
o} o]

In the limit as k0 approaches zero, Equation (2.1,37) becomes

Aoz—g Nl - — J (2.1.38)

It should be noted that the above expression for Ko is independent of the

parameter ko.
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Low frequency expressions for E and H now can be derived using
Equation (2.1.38).
E=E +E
(o} 1
= = J (E¢+<-°K)
; N ki BN \7 ~
- 55; = + = (Nl - _Z_) J (2.1,39)

If k is sufficiently small, the second term can be neglected (see Section

3.1), Under such conditions

R

-y NJ

w€ a
o)

= E (2.1.40)

Equation (2.1,40) asserts that the predominant low frequency electric
field can be derived entirely from the scalar potential y, Thus Eo 1s the

well-known quasi-static electric field, The preceding derivation not only

24
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displays the quasi-static electric field as a low frequepcy‘lim;t but also

ﬂb}oéiaés a first order correction term (the second term in Equation (2.,1.39)).

. { It will now be shown that the two terms of Equationi(291u39i are identi-

cal to the two near field terms which can be derived hy the method 6f Mittra

: 1 :
and Deschamps, In their work, Mititra and Deschamps derive an expression for
one electric field component by going through two long divisions; the

following electric field derivation makes use of this approach, In the

notation of this report, the tiansformed electfic.field méy be expfeésed

'

as.

E = - jw MOM—I -j (2,,1.,41)
o= 2 g1 =
= 5E k0 M*J
IAN} o :
I LRSS R N
= 1 217 (2.1,42)
°la+k b+ K ¢
o o
The first long division gives~ ‘
bN cNo
z_a | R iy A Ve A
E =3 =+ ki i - 2 J (2.1.43)
o a+k b+ k‘; c

25
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The second long division gives
(2.1,44)
. . No . (bNo 1)
~ N k bN N~bN + (b=c) = & k% ¢ | —— - ~
Fool| 24 B N~ 2 gt (-4 A L 0 L. J
we 2 & | & 0

]
a & kD b ¢ k; ¢

The first two terms of Equation (2,1,44) are interpreted by Mittra and
Deschamps as near field terms because they are singular at the origin,

Note that Equation (2.1,39) is identical to the first two terms of Equation
(2.1.44).

The transformed magnetic field was given by Equation (2,1.23): it 1s

H= g kxM?t 7 (2.1.48)

Equation (2.1.30) shows that this can be expressed as

J (2.1.48)

However,

= 0 (2.1.47)
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Thus a general expression for the transformed magne{ic field is
~ _ 'l"N +k2 N ~
H=j kx|l 2 K (2.1.48)
. a + Kb+ K ¢ 1
) o
A comparison of Equation (2.1.23) with Equation (2.1.26) shows that
Equation (2.1.48) can be written as
- _ [N o+ K N -
H= j ky|l4—2.2 J (2.1.49)
a + kb + Kec
o o
In the 1limit as ki——ro , Equation (2,1,.48) becomes
ﬁ ...k_:‘._.ljl.__J.L_ (2 0
o = J " « .1.50)
and similarly, Equation (2.1.49) becomes
~ ﬁxN J
H = -——-;1-—- (2.1.51)

27
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Further insight into the meaning of Equations (2.,1,50) and (2.1.51)
can be obtained by employing a different derivation, One of Maxwell's
equations is
UxH=jw eox'E' + J (2,1.52)
Taking the curl of Equation (2,1.52) and setting ¥ . H = 0 gives
v2§=-Jweovxx"FI-vx'5 (2.1,53)
In the low frequency or quasi-static limit, E= - V ¢, Substitution of
this in Equation (2,1,53) gives
-—' ——
2 H = Jw€é UXKVY -VRJ (2.1.54)

If K is a scalar the first term on the right hand side 1s identically

-‘—’ —
zero and Ho and J are related only by the point form of Ampére's law
for direct currents, If K is a tensor, the term containing K is not zero

L ]
in general and thus contributes to Ho’ Evidently in an anisotropic medium

an irrotational electric field can contribute to the magnetic field, A

28




4

23

conveniernt expression for the magnetic field can be obtained by taking the

Fourier transform of Equation (2.1.54).

i
0

(o]
"Ll

— — — ..3 _ om
= (- kxEkk + KXJ
K k- Kk
ni ot - =
\\}\ Ho‘-TzL kX3
: k

This gives

(2.

(2.

1.55)

1.56)

Equation (2,1.55) can be written in rectangular components as follows:

r . "
(K <K )k k -jK
o'k, Kg™d
~t k§+k3+k3 ' "
H = J {-}‘iyﬂ—i - (K -K )k k_-JK
° KikPud |k aP4k?)+K kP 1@
1 2 8 |. "1 2 o3
"
K (k%+x?)
1 2
\ L L]

9

k k
18

k k bl k T k7
2 8 z

>(201,57)

._.J 1y 2 X
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It can be shown that this low frequency expression for ﬁ; is identical to
Equation (2.1,51) (i.e,. E; = §0)° The advantage of this derivation is
that it displays the low frequency magnetic field as the sum of two terms
(see Equation (2.1.55)), the first term being identically zero in isotropic
media and the second simply a statement of Ampgre's law for direct
currents, The meaning of the first term can be clarified be relating

it to the induced current which flows in the medium due to the quasi~-

static electric field, Equation (2.1.21) shows that

el
[}
[ §
Ca
€
o
=
(&

=~1 W € E - -’!
3 o E, o E (2.1.58)

in which O is the conductivity tensor, If the electric field Eo induces

a current density?1 in the medium, 31 is given by
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= -J - jwe€ E
0 o] 0
Kkk.Jd =
- - ___.k_k__:{-jweoE (2.1.59)
kK-KXE °

The induced current is seen to consist of two parts; the first part 1is
irrotational only when K is a scalar and the second is always irrotational,
The magnetic field resulting from the quasi-static induced current is

given by

2 J - =
H == kx3J
K 1
=2 kXKk k' J (2.1 60)
K2 k- Kk

This expression is exactly the first term of Equation (2.1.55) which now

may be written

H=H + -+ kXJ (2.1.61)
1 'i{"z
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The existence of an induced magnetic field Ei in the low frequency limit
suggests that unusual electrcmagnetic effects may bebpredicted by quasi-
static theory when it is applied to problems in anisotropic media.
Propagation effects in magnetoplasmas and ferrites have been described
in the literature in connection with source-free problen&élg problem
which includes sources is the subject of this report and it will be shown
in Sections 2.3 and 2.4 that the quasi-static theory predicts a form of
radiation,

The low frequency behaviour of the field quantities may be
summarized by noting their proportionality with respect to frequency

when expressed in terms of an operation on an assumed current density T

1 1
Yy« =, Eax ~ ,
(2.1.62)
A = const., H = const,.

The infinities in Y and E at w = 0 arise from the fact that J is assumed
to remain constant as w— 0, It would be more realistic to base field
calculations at @ = O on some assumed charge distribution, Since an
oscillating charge distribution P is related to a current distribution by

the equation of continuity

v.:i +pr::0 (2.1.63)
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it is clear that an assumed charge distribution would produce a finite
¢ and E at w = 0,

The existence of quasi-static field expressions suggests that the
Poynting theorem might also be expressed in a quasi-static form., The

Poynting theorem is often written as follows:

E.TJ dv = jw (E«D -B - H*) dv - (Ex'ﬁ*)«ﬂds (2.1.64)

\') v S

In the quasi-static 1imit the relations of Equation (2.1.62) indicate that
.
the B - H term is negligible, A more useful limiting form of the

Poynting theorem may be derived by substituting

E==- Vy-jwa (2.1.65)

in the surface integral, This gives
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The first surface integral can be simplified using the vector indentity

vupx’ﬁ*:v)up i -».pvx'ﬁ* (2.1.67)

and the conjugate of one of Maxwell's equations,

—r
VxH = - jwD 4 J (2.1.68)

If it is assumed that J = O on the surface S, Poynting's theorem becomes

(2.1.69)

o

E.Jdv=jo (-E_: D" —E-—*) v+ Jw (4; D4 Kx'ﬁ*)- Q ds

\' v S

In the quasi-static 1imit the relations of Equation (2.1,62) indicate that

- — ek
the B+ H and AXH terms are negligible., Thus a quasi-static form for

Poynting's theorem is

— ik — — -
".E +Jdv=Jw JE* Ddv + jw V] p* . A ds (2.1.70)
A

\'a S
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This formula is similar to the well known energy expression to be found in
textbooks on electrostatics. A similar formula for the magnetostatic limit
may be derived if H is expressed iﬁ terms of a magnetic scalar potential,
The surface integral of the magnetostatic formula gives a result identical
to that obtained by Trivelpiece and Goulg in their equation numbered
(A.10).

The quasi-static field equations and Poynting theorem discussed above
constitute a body of theory sufficient for a study of the near fields of a
short antenna in a magnetoplasma, Before proceeding to the antenna
problem, it is worthwhile to examine the form of the quasi-static

differential equation, Equation (2,1.9) may be expressed as

T T = AL S (2.1.71)

K
where a = X

Let us consider the lossless case in which both K' and K0 are real., Some
information about the potential y may be obtained from a study of the
characteristic surfaces of the above differential equation (see
Sneddon14, for instance). The nature of the characteristic surfaces

2

depends on whether a“ is positive or negative; the equation is elliptic

when a% is positive and hyperbolic when a? is negative (see Figure 2,1.1).
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Figure 2.1.1 The elliptic and hyperbolic regions,
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Z axis) of the characteristic cone when the
differential equation is hyperbolic
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An elliptic equation has complex characteristic surfaces and thus no
physical significance can be attached to them., A hyperbolic equation
has real characteristic surfaces along which discontinuities "propagate'
(i.,e. cannot vanish), Thus under hyperbolic conditions any discontinuity
in V + J will caﬁse a discontinuity in the electric field (-V ¢)
extending outward from the region where the source current J is
localized,

The equation of the family of characteristic surfaces may be derived
easily by writing the quasi-static differential equation in cyllndrica1>

co-ordinates for the axially symmetric case. If r is the radial variable

and Z is the axial variable, Equation (2.1.71) becomes

1 1 V. J
4‘r:z' T T wr ) Yoz = J weK 2.1.72)
a o)
The equation for the characteristic surface as given by Sneddon is
22 44 2 oo (2.1.,73)
" (2.1,73.

in which the dot represents differentiation with respect to some parameter,

The solution is

37




1
z= + Py r 4+ const,
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(2.1,74)

which represents a family of cones when a2 is negative, Therefore any

source discontinuity at a point will result in a conical field dis-

continuity emanating from that point, Under hyperbolic conditions

the field of a short dipole should contain three discontinuity cones,

two emanating from its ends and one from its center, These cones are

evident in the field formula to be derived in Section 2,2,

Thus the

most prominent feature of the field solution has been obtained without

a detailed solution,

2.2 The Field of a Short Dipole

As shown in Sectiqn 2,1, the quasi-static differential equation is

t
R G +¥,) + KW, =- ¢

This may be written as

(2.2.1)

(2.2.2)
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" K
where a=\g

The solution will be obtained using the Fourier transform pair

!
:-.-'i
ﬂi

f (e " dx dy dz

=y
=i
It

(2.2.3)

1 (1)

13

——ar T e 5T gk dk dk
(27)8 1 2 3

The tramsforms can be used to solve Equatinn (2.2.2) and the solution can

be expressed as

wv
- 1 v v Jk T
Y (r) =e x' - III 3.__1.9_‘2.__.__.! dk dk dk (2.2.9
o o, f + k2 + 55
2
a
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The transform of the charge distribution is
- _ =3k x + k y+k 2)
q &) = q (e ! 2 3  d4x dy dz (2.2.5)
This can be written in the (u,y,v) coordinate system as shown in Figure
2.2.1. Both r and k can be transformed as follows:
X=usin @ - v cos 6
Z =ucos O + Vv sin © (2.2.6)
t
k =k sin @ + k cos @
" 1 3
k =-klcos e + kbsin e (2.2.7)
Now q can be expressed as
t "
~ - - k
g @ = [ e @ywed®urky+ kv, g4 (2.2.8)

40
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The co-ordinate system

Figure 2,2.1
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The dipole field will be derived from the filamentary, triangular

36

current distribution shown in Figure 2.2.2. The corresponding charge

distribution is obtained from the equation of continuity,

_ 1 aJﬁ
q (r)= - oo Fu 6(y) 6(v)

1

(2.2.9)

The function T(u) is shown in Figure 2,2,3, The transform of the charge

distribution is

(2.2,10)

Thigs can be substituted into Equation (2.2.,4) and integration will result

in an expression for the potential ., However, for impedance calculation,

the electric field parallel to thé current (Eu) is required,

Se

Eu(?) = -

NN
)
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q(u) =

+L

Figure 2,2.,3 The charge distribution
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T(u)
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' 1t
. . J(k uu!fk2 y+k v)
= - e™Jk L, Jk L-z) 2 dk dk dk
jw(2m3€ K L K2 1oz 3
° 0 k2 4 2 4 3
1 2 a2
= L [ T * Teery = (o] (2.2.11)
j» € KL °
The integral I(L) can be expressed as
(2.2.12)
J[k (x-L sinB) + k y + k (z-L co:»e)]
. (25)3 2 = dk dic dk
+ K+ S
2 az
Employing a transformation to cylindrical coordinates,
x - L sinf = p1 cos¢1 k =y cosf
y = sin@ k =y simn
1 2
- . = k - ’
2 - L cosd = z s T K , (2.2.13)
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we can write
1 r 3 A J[ypcos(”]-¢)+kz
I, = -1 e 1 . 3 dn dy dk
(L) 3 Y Y
(2m) 2 3
-~ o © Y2 . _g_
a
) jk =z
s 1 J (ypP)
= e 2 Y. 4y dk (2.2.14)
(2m)? k , 8
© 0 v o+ =
o2
since
N o2 Jy p cos(M- @)
IR = F f e ! 1 oan . (2.2.15)
o]
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Tne next step involves contour integration with respect to k ,
Tt is convenient to designate by "a" the square root of K'/K which
o
has a posirtive real part, however small, Under lossless hyperbolic
conditions (a® negative with v=:0) the correct choice for "a‘ must be
made by taking the limit as the collision frequency (v) approaches zero,
The contour integration gives
oo Jk z o0 Jk 2z
3 12 3 1
ke £ dk = dk
27 12 3 k + ]a‘y) (k "Jay ) 3
-oC Yz g.ma— ~00 ’
a.2
~ay |z |
a = - .
o - & (2. 2161
2 Y

The 1ntegration contours are shown in Figure (2.2.4)
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Figure 2.,2,4 Integration Contours
C 1is used for z positive and C for z negative,
1 1 2 1
Integration with respect to <y completes the evaluation of I(L)n
. ~ay lzll
= e J d
Tw™ @ e oY P ) dy
0
- 2 2 2 \~% (2.2,17)
= I7 ©* + a z1 )
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Similar expressions for I(~L) and I(o) may be derived, Using the
nomenclature

pi = (x~-L sin@)? + y? z =z - L cos@

p';’- + (x+L sing)? 4 y2 z =2z + L cos®

2

2 2

pe x2 4y z = 2 (2.2 18)

o) o
we may express the electric field parallel to the dipole as
E - I T . S— (2.2.19)

a 1
T Cr————————e——— + e it e T -~
u o f 2 2 """"—"2 3 2 2 2 2
W4T € K L | A + a‘z + a“ z + a“ =z
3 o} /\D: 1 p2 2 p 2

Under lossless hyperbolic conditions (a® real and negative), Eu be-

comes infinite on the surfaces pf + a? 2% = 0, p2 + a? 22 = 0, and
1 2 2
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pi + a? zi = 0, These surfaces are cones emanating from the ends and
center of the dipole. Their discovery was anticipated by the discussion
of the differential equation characteristics in Section 2,1, 1In addition,
inspection of Equation (2,2.19) shows that phase shifts across the conical

surfaces occur under hyperbolic conditions,

2.3 The Impedance of a Short Dipole

For an input current of unit magnitude, the input impedance of an

antenna with a conducting surface is given by

= - J.E
Z J ds (2.3.1)

where S is the antenna surface, In this formula J is the current density
on the antenna surface and E is the electric field at the antenna surface
when the conducting material in the antenna is removed. This impedance
formula may be derived using the "reaction concept" and such derivations
have been discussed recently by Richmond*® for igsotropic media, These
derivations are based on the Lorentz integral relation between any two

solutions of Maxwell's equations (the solutions are numbered 1 and 2):

('ﬁlx”ﬁ -EX®) - ndas= (3-E-i~ﬁ2-3.'ﬁ+'ﬁ2-ﬁl)dv (2.3.2)
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where J and K are electric and magnetic current respectively, This relation
may be written for a magneto-ionic medium only 1f the sense of the magnetic
field is reversed for one solution (say number 2)., If the volume V is

the entire space exterior to the antenna, the surface integral at infinity

vanishes and there remains

(ExH -EXH ) -nds=0 (2.3.3)
1 2 2 1
S
where 8 is the antenna surface (see Figure 2.3.1). If nXH =‘31 and
1

-nX E = Kl then

K. H ds = J -E ds (2.3.49)
12 1 2
S
If the gap is narrow,
K-H ds =~V 1 (2.3.5)
1 2 12
S

o1
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Figure 2,3,1 Derivation of the impedance rmula
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where V and 1 represent source voltage and current, If J = st J and
1
V.

1 = I = 1 and the 1input impedance is defined by Z,ln =~Tl, then
1 2

1 —_— :

Z = - J -E ds (2.3.6)
in 2 2
I
S

which reduces to Equation (2.3.1) for unit source current, Since solution

2 requires reversal of the DC magentic field, i; must be calculated wunder
such conditions, ?2 at the gap is completely determined by the source
curyvent and thus 13 unaffected by the DC magnetic field reversal, However
in the quasi-static theory for an infinite medium all solutions for the
electric field are independent of the sense of the DC magnetic field, Con-
sequently 1n the impedance calculations to follow, Equation (2,3.1) may

be used just as i1t would be in free space,

The 1mpedance formula for unit input current (in the (u,y,v) coordinaie

system) 1is

zZ = - J E ds (2.3.7)

Transformation to a cylindrical (u,r,®) coordinate system (as in

Figure 2,3,2) gives

93
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Figure 2,3,2 The cylindrical co-ordinate system
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y = r cos® | v=r sind
If the current is spread uniformly over the antenna surface, the curren:
density is
¢ = 6 r- 0] ) )
Ju 2P (r-p) for u>0 (2.3.8)
1+ =
= 6 - . <
25D (r-p) for u 0

In order to simplify the calculations, one can obtain an expression for
the impedance of a monopole of length L, The impedance of a dipole of

length 2L is just twice the monopole impedance, The monopole impedance is

27 L
1 u : .
2 =g ff (- 7)) E (4P, ¢ dudd (2.3.9)
o O

and Eu (u,P,®) is given in Equation (2.2.19). In the cylindrical

25



coordinate system,

[ (u-L)sing - p cos6 sing ]2 + [P cos(¢>]2

©
il

=N
™
il

[ (u+L)sing - P cos6 sing ]2 + [P cos(}b]2

P = [ u sind - P cos@ sing ]2 + [P cosd)?

z = (u-L) cos® + P sind singd
z, = (u+L) cos® + P sin sing
z = u cosf + P sing sing

The expression for Eu may be simplified by introducing

F=14+ (a®2-1) cos?g
G =20 (a®-1) sin® cos® sing
H = pz[l + (a®-1) sin’p sin2¢ﬂ

96
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(2.3.10)

(2.3.11)

(2.3.12)
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Thus,
pf + a? z: = F(u—L)2 + G(u~L) + H
2 .2 2
pz + o’ 22 = F(wl)? + G(wl) + H
pzo + a2 zf) =F 4+ Gu+ H (2.3,13)
The monopole impedance is
27
z, = —A o= | as a1 ad (2.3.14)
n jw 4TE K L 1z 3
© o
where
r (1 u) d
- u
1 .= L
1 2
¢ \J F(u-L)* + G(u~L) + H
(2.3.15)
Qs

1
»lf'— In [2 '\IF(F al+ Ga + H) 4+ 2F a04G

Q=1
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L (l-%)du
I =
2 2
F(u+L)® + G(ut+L) 4+ H
o
a=2L
1 NFa?sGa4 8 G 1 2
= -z T --2—}:-——1n 2'ij(Fa+Go.+H)+2Fa+G
I"IF
=L
a=2L
+ 2 1 in [2/\l;(Fu2+Ga +H)+2Fa+G] (2.3.16)
F
. a=L
L (l-%)du
I = PR - A
8 2
'\IFu+Gu+H
o]
a=L
2
- i(NEa+Ga+ B G L |, \[F(Fa?+ Ga + H) + 2F 046
L 2F
F F
a=0

a=L
{l 2
+ ——1n[2,¢F(Fa+Ga+H)+2Fa+G] (2.3.17)
F

a=0
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In order to make the expressions more compact, let

N (@) = tdFa2+Gu+H

M@ = 2 dF(F 0’4 Ga+ W +2Fa+G

The sum of the above i1ntegrals is

I4+1I-~21= bt [3N(o) - 3N(L) + N(2L) - N(-L)]
1 2 3 FL
G 1 M(0)3 M(2L)
R A S
-\ F M (L) M(-L)

2 M(o) M(2L)
L. 1n A2l Ml

NF M (L)

1f it is assumed that P << L, then the above formula can be greatly

simplified:

99
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(2.3.18)

(2.3.19)
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(2.3.20)

I+1 -2 = 2 [1-1n EE 4+ 1n (JFTNL.;.(aZ-l)Si,nZe sin2¢ +(a?-1)sing cosd sin¢)]
1 2 3
F

Substitution of the above in Eguation (2.,3.14) gives

27

Zi = a ' [1n % - l41lnF- %.Tf l.n(ﬁrﬁ-%(az.l)sinze sin2¢
" jueme K L NF
o
+(a?-1)sin® cos@ sinqb)dqa (2.3.21)
It can be shown that
27T
ﬂ2

%—,n-, ff(sin2¢, sing) d¢=-11; [f(sin2¢ , ~s1ng) +f(sin2¢, sinqb)] dp (2.3.22)

o
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' from which
' 27
1 2 2 2 2 :
' T ln(JF,Jl-Q-(a -1)sin“® sin“¢p + (a“-1)sin® cosB sin(,‘b) d¢
o
| %,
1
= 5] 1n F[l+(a2-l)sinze sin2¢] - (a®-1)? sin’p cos’@ sin®¢) do
| o
F .
' = 1n’r’2* 2 (2.3.23)
. Substitution of the above in Equation (2.3.21) gives
' z = z. [ln 1.1 -1 %%E (2.3.24)
1n juame K LNF P
T
K
where F = sinze + a2 cosze and a2 =X
0
' This formula gives the input impedance of a short, thin monopole making an
. angle 6 with the DC magnetic field, Two special cases are of interest,
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- T
® = 0 (monopole parallel to HDC) and 6 = /2 (monopole perpendicular to
HDC)'
Parallel case:
z, = L [mg -1+ 1n a] (2.3.25)
n Juame K L
Perpendicular case:
a L at+l
Z, = ——— EJI—-— 1l -1n —
in jwem€ K L 2 (2.3.26)
1
In free space (K0 = K = 1) the above impedance formulas reduce to
1 L
zi = —— [ln - - l] (2.3.27)
N juemE L P

which can be found in any discussion of short, cylindrical antennas
(Schelkunoff and Friis '® for instance).

1t is interesting to observe that impedance formula, Equation (2,3,24),
can be re-written in the same form as the free space impedance (Equation

(2.3.27)) if the dimensions L and 0 are suitably scaled, That is,
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where
4 [] L
L =1L JK /ko sin29 + K cosze
and
* JK
? p K ) 1
== K K
P 2 - + o
JKosinze + K cos?@

The significance of this scaling will be discussed further in Section 2,5,

The above impedance expressions all contain the logarithm of a function
of "a", When the medium is lossless and hyperbolic, the logarithm produces
a positive, real part in the input impedance, This indicates that the
antenna transmits energy irreversibly into the magneto plasma. It will be
shown in Section 2.4 that this energy transmission is in fact a form of
radiation,

Numerical impedance calculations will be presented in Chapter 3 along
with the experimental results,

2.4 The Poynting Theorem and Calculation of Radiation Resistance

The radiation resistance of an antenna can be obtained by integrating

the real part of the Poynting vector over a closed surface surrounding the

63




58

antenna. Since the quasi-static theory for a lossless plasma predicts a
dipole impedance having a positive real part, this real part should be

the radiation resistance, Therefore, as a check on the impedance calcula-
tion, it should be possible to compute an identical radiation resistance
by integrating over a surface at an arbitrary distance from the antenna.
In addition, it is important to establish that the total outward power
flow is independent of the distance between the source and the surface of
integration; this assures that the power flow has the characteristics of

ni? (apparent power dissipation in a

radiation and not of "intrinsic loss
finite lossless region),
It is necessary first of all to write the Poynting theorem in a

form readily applicable to quasi-static analysis., Equation (2.1.60) is

in such a form and is repeated here for convenience:

- —%
dv = jw JE.D dv 4+ jw Jy D - A ds (2.4.1)

=l
il

v A S

In quasi-static theory, the addition of a constant to the scalar potentiai
} leaves the electric field unchanged. In Equation (2.4.1), the addition
of a constant to y leaves the equation unchanged provided that there is
zero net charge within the surface S,

Let us now compute the outward power flow from a short monopole

(or dipole) which is oriented parallel to the DC magnetic field. This
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restriction simplifies the computation while preserving the essential
features of the analysis., The outward power flow P through a surface
S is given by

—% )
P = -jw YD - 4Ads (2.4.6)

in the quasi-static limit, For a monopole, the surfaceS can be a

closed cylinder as shown in Figure 2.4.1, For P to have a real part, the
product B*n 7 must have an imaginary part, This can occur only under
hyperbolic conditions and then only between the characteristic cones
emanating from the ends of the antenna. Thus P will have a real part
only over the shaded region of Sl. The surface 82 can be removed to
infinity and then neglected, at least for the computation of real power
flow,

The necessary field expressions are

1 1 2

E,(0,2) = — (2.4.7)

M| —— ¥ B
\IPZ+§(z+L)2 4p2+a2 (z-L)2 ,\Jp2+a2z2
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CONDUCTING PLANE U\
MONOPOLE IMAGE

Figure 2.4.,1 Radiation fields of a monopole
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L

Y ,2z) = ?]-.—; f ) 1 - 1 du
\]p2+a2 (z+u)? \Jp2+a2 (z-u)?

o]

t
where M= MﬂﬁoK L

The power flow through S is designated P where
1 1

o0 2T

*
_J'wEOKo ff Y@, z) E, (,2) pdo dp
o0

]

8

Y@,2) E, (0,2) dp?

]
O

where

= —-jWHE K
Q J of6
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(2.4.8)

(2.4.9)
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L o
= ZQLEEi.I:I'. 1 _ 1 1 N 1
w J J (pP+a? (zrw?  \prral (z-w|NPP+a? (24L1)% N P +a? (2-L)?

92+a z

= =~ I, du where i=1,2 and j=1,2,3 (2.4.10)

Here, Iij indicates an integral formed from one of the six products in-
dicated above, In general the real part of P comes from the imaginary
1

2 s negative

parts of the integrals I-j' Imaginary parts arise when a
i
(say a? = -Cz) and over a limited range of the variable pz. For instance,

consider the integral I
11

(2.4.11)

o0
I = ‘,. ap”
11 ' *
A t\lpz ~C? (z+u)? (AEJZ -c? (z+L)2)
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It 1s evidenr thav the imaginary part of I is given by
11
PP (z4L)*
d .
J ImI = pZ * (2.4.12)
11 B
(7 G (NP nr? )
p2:C2 (z+u)2
P?=C? (24 L)?
= j 2 tan
p?=C (z+u)?
B [:T.:ik‘;‘l o - tan”lo]
= 4 j nT  where n is an odd integer (2.4.13)
I+ can be shown readily that Im1 =-ImI , ImI = - Im1 , and
21 11 22 12
1m = Im T Thus
23 i3
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jIm T I =2jInl (2.4.14)
p2=C2(z+u)2
dp?
= =4 *
,Jpz—Cz (z+u)? (J pz—szz)
p2=0222
p2=C2(z+u)2
2
= 43 , ap
e pre
2 2
P =C2Z
= + n 4j7T where n is an odd integer, (2.4.15)

The correct value for + n can be determined by introducing a small loss

and observing the locations of the points P?=C?z? and P?=C? (z+u)? in the
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complex pz-plane, There are two cases of interest, K< o and K > o.

These cases correspond to the two hyperbolic regions in a szs, X graph

(compare with Figure 2.1.1):

K'>0

y2 K'<0

X —»

In the complex pz-plane, the real axis is the path of integration,

4 2 2 1
K > o the points c2z? and C?(z+u) are below the real axis, If K < o

If

J

the two points are above the real axis., Thus the imaginary part of the

4
integral (the "phase change') is negative for K > o and positive for

K < o. In addition the total phase change of the integral can be no

greater than 7 in magnitude so that n = 1,

1
Thus j Im Z I, jw if K > o0

ij

]
N

1
-437@ ifK <o

]

If Pr is the real outward power flow through the surface S s
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L
2
P = - Qlal jIm £ 1I,, .du (2.4.17)
r . 1]
iJ
o)
| 2 !
ign for K >
- . Qlal +43ML + sig o ' 0
M - sign for K< o
-(-jwm€ K ) K
- —=eo L& (i 43-::) L
(wame K L)? o
- —1 (2.4.18)
4wLE [K |
o)
If the input current is unity then the radiation resistance is given by
Rrad = -———;L——T—— (2.4.19)
4wL€O|K I

From the former impedance calculations for a monopole we have
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ln a

il

Re(Z, ) (2.4.20)
in

|}
jw2d€ K L
(o]

+ i @/2 + sign for K > o
- 1 4

t
jweﬂfox L - sign for K< o

1

]

" 4WLE |K |
o]

= R . (2.4.21)
rad

It has been shown that the real power flow is independent of the height

"z" of the surface S1 and that the radiation resistance is equal to the

real part of the input impedance., This indicates presence of a mode of
radiation which is most unusual because it can have a pronounced effect even
for a very short antenna, The explanation for this phenomenon was suggested
in Section 2.1 where it was‘shown that an irrotational electric field in-
duces a magnetic field in a magnetoplasma, making possible electro-
magnetic effects such as radiation, However it remains to be shown that it

is the induced magnetic field ﬁi which is totally responsible for the real

part of the total outward power flow P, This can be done by writing

P = EXH . A ds : (2.4.22)




68
and using the quasi-static electric field together with the total low
frequency magnetic field, The 1latter is given in Equation (2,1.61) as

~ = j - =
H=H + *— kxJ (2.4.23)
1 "122

Evaluation of Equation (2.4,22) for the case of a monopole parallel to
the DC magnetic field gives the same integral already evaluated
(Equation (2,4.10)). Furthermore the real part of the outward power
flow arises entirely from the induced magnetic field ﬁi'

2.5 Derivation of the Impedance Formula by Dimensional Scaling

Consider the problem of transforming the anisotropic differential
equations into equations having the same form as the free space differential
equations. In the quasi-static theory three equations are important, any

two of which are independent., They are

q
K .
1 qux + K2 (Pyy + K;;("bzz Go (2.5.1)
V:Jd+jwg=0 (2.5.2)
1 -
K K K = . .3
1<pxx+ , <pyy + 3¢zz o€ 7 - J (2.5.3)

h
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where K . K | K3 are the relative permittivities in the x, y, z coordinate
1 2

directions (respectively), q is the charge density and J is the current

jot

density. A time factor e is understood.

Dimensional scaling of the following form will be considered:

x' = a x, y' =B vy, z' = yz, (2.5.4)

In order to transform the "anistropic Laplacian" into an "isotropic” or

ordinary Laplacian, it is required that

) (2.5.5)

i}

K1¢xx + K2¢yy + K3¢ C (¢xl xl + ¢yly‘ + Z' Z'

It

cA ¢

where C is some constant, Substituting the scaled variables on the left

side and equating the coefficients gives

a? K B2 K, v K
_.__.LC = : G 1 (2.5.6)
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or
s C 2 _C 2 _C
a =K_) [3 =-K—, Y _.-K— (2.5.7)
1 2 3
After transformation, the divergence of the current density becomes
V.J=apy V. (2.5.8)
Equations (2.5.1) and (2.5.2) can be expressed as
3 .5,
)
AaByT T+ jwg=0 (2.5.10)
If it is assumed that C and a 3 y are not zero, Equations (2.5.9) and
(2.5.10) become
A D= - i (2.5.11)
’ EOC e
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? =0 z
P\ J + ] T by (2.5.12)

These can be reduced to the free-space form if @ and q are suitably

transformed, say to W' and q'.
q' = % (2.5.13)
wq

wq' = afPy (2.5.14)

It is necessary to put some restriction on the frequency and charge
scaling., First let it be assumed that W'=w (frequency-invariant scaling).

Equations (2.5.13) and (2.5.14) give
C= afy. (2.5.15)

Equations (2.5.6) and (2.5.15) can be solved for a, B, y, and C, giving

a = [KK = |[KK :'xx' C = lxx_f . (2.5.16)
2 3’ P 1 3’ Y 1 2’ 12 3

7
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Now let it be assumed that q' = q (charge-invariant scaling), It
is apparent that
C=1 (2.5.17)
and from Equation (2.5.7),
1 1 1
a = s B = C = (2.5.18)

To summarize, there are two principal types of scaling, one frequency-.

invariant and one charge-invariant,

a) Frequency-invariant scaling:

x' = K2K3 x W o= w (2.5.19)

'\

q
t | B
y‘,\Kley Q KK K
12 3

z'=-KK zZ

N 12

b) Charge-invariant scaling:
x' = X/IK w!
1
y/lK q' = q
2
z/|K
3

(2.5.20)

H
€
-
o X
™

‘<.
!

1}

Z'
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Either of these two methods of scaling converts the equations of free-
space form
ql
No=- & (2.5.21)
o
V' - J 4w ogf =0 (2.5.22)
* 1 * It
N AvA BN (2.5.23)
jwt €
J o
to Equations (2,5.1), (2.5.2), (2.5,3), respectively, Since frequency
(rather than charge) appears explicitly in the quasi-static impedance
formulas, frequency-invariant scaling is to be preferred.
For a magnetized plasma with the DC magnetic field oriented along
with the z axis, the scaling is somewhat simplified,
a) Frequency-invariant scaling:
) S 1
X =\NKE, X W o= w (2.5.24)
y' = |K'K y q' = 9
© K'2K
o
z! = K z

b) Charge-invariant scaling:
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x! = x/ {K' W' = K .]_K_O (2.5.25)

v/ q'

‘<-.
n
I

o]

z' = zéJFE;

By means of scaling, the quasi-static differential equations may be
transformed into free space equations, If the scaling is applied to the
dimensions of a cylindrical dipole, the equivalent free space dipole can
be shown to have an elliptical cross section (for the case of real, positive
scale factors). This free space dipole, in turn, has a free space equivalent

| with a circular cross section., Thus the impedance of a short dipole in an
anisotropic medium may be found by a simple scaling of the well-known
results for cylindrical antennas in free space., The details of this
approach to the problem will be worked out in the following paragraphs,

Frequency~invariant scaling will be employed, The scale factors are

given by

X' = lK’Ko x y' = lK'KO y z' = K'z (2.5.26)

The co-ordinate system is shown in Figure 2.,5.1.
The length scales easily., If x', z' are the projections of the

scaled length L' and X, z are the projections of L, we have
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Figure 2,5.1 The co-ordinate system in the magnetoplasma

81




76
L' =llx‘2 + z'2 =JK' ,\IKO 2 3+ K' 2?
=4 K? dl&)sinze + K' cos’@ L (2.5.27)
The radial scaling is somewhat more involved, The circular cross
section of the dipole is given by the equation
v o+ y: = p? (2.5.28)
where
u =2z cosf + X sin®
v = z sinB - X cos@ (2.5.29)
After scaling, the above cross section equation becomes
z' sin@ x' cos@ \? y'? 2
- + I = P (2.5.30)

1
K d K’Ko o)

The co-ordinate system is shown in Figure 2,5.2. The co-ordinate trans-

formation (x',z')—>(u',v') is given by
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(INTO PAPER)

83

Figure 2.5.2 The free space co-ordinate system



z' = u' cos@ + v' sinb
) o]

x' = u' sin@ - v' sin®@
o o

The relation between 6 and 60 is

' Ko x Ko
tamd, = 2v S\w z T Nw tene
or
K sinB
) A o
sing =
o
J Kosin2 2] +K' cos? 8
or
ﬂ|K'
coseo = cos ©

4Kosin29 + K'cos®®

Now the cross section equation becomes

2 Kosinze + K' cos®e

1
K'2x K'K,
0]

84
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(2.5.31)

(2.5.32)

(2.5.33)

(2.5.34)

(2.5,35)
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or

+ — =1 (2.5.36)

4 Kosinze + K' cosze

This is an ellipse with semi-axes

px';,\lx
A= = B= pAK' K (2.5.37)

] 2 o}

'\lKosinze + K' c0526

Thus there exists an equivalent free space dipole having an elliptical
cross section,
Y, T. Lo18 has shown that a dipole with an elliptical cross section
has an equivalent with a circular cross section, the radius of which is
A+B

given by p' = - - Thus the radial scaling can be written as

KK
iy ° T :
pr =3 +/‘|K‘KO (2.5.38)

d Kosinze + K' cos?@
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The impedance of a short cylindrical monopole in free space is
.18
usually expressed (see Schelkunoff and Friis) as
Li
2, = ——— [ln p~—,-1] (2.5.39)
jwamwe L!
o}
When L' and p' are transformed as indicated above, the formula becomes
Z, = 1 1n L. 1
in , = - P
jw2WE€ 1 NK! K si K'c
Jj o &47 4 o51n 6 + 0s“0
.2 ' 2
2(K051n 0 + K'cos“0)
+ : (2.5.40)

In
4 ' .2 2
KOQQK + |K051n 6 + K'cos 6)

This formula could have been derived using charge-invariant scaling,
which involves the slight additional complication of a frequency scale
factor, The above expression is identical to the one obtained by solving

the anisotropic source problem without recourse to scaling.

2.6 The Effect of a Cylindrical Current Assumption on the Computed Impedance

The analysis in the preceding sections of Chapter 2 has uncovered
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unexpected phenomena associated with lossless, hyperbolic conditions in
the magnetoplasma, The field of a short dipole exhibits infinite
discontinuities and its impedance has a real part, indicating radiation,
Since such a phenomenon may be caused by a poor choice of current dis-
tribution, this section and the following one are devoted to analyses of
two different current distributions. This section considers the tri-
angular current to be spread over the cylindrical surface of the dipole
rather than being concentrated in an infinitesimal filament along the
dipole axis,

For the sake of simplicity, both the dipole and the DC magnetlé
field are oriented in the z direction, Because of cylindrical symmetry,
the differential equation may be expressed in cylindrical co-ordinates

as

Y = - Cq (2.6.1)

This equation is to be solved with the help of the transform pair

o °0
~ -jkz
f(k,y) = ff f(z,r) e J_(yr) r dr dz (2.6.2)
=© o
oCc 0@
flz,r) = %1—, ff ¥(k,y) eIKZ J (yr) y dy dk (2.6.3)
=00 0
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If the differential equation is transformed, solved algebraically and
re-transformed, the potential can be expressed as
© o
Y(z,r) = q (k ) R (yr)y dy dk (2.6.4)
21{& K' o .6.
V.
-00 fo)

a

In order to find q, it is necessary to consider a current distribution J
which is spread uniformly over a cylinder of radius P. The corresponding

charge distribution is

1 9 J(z) 5 (r-p)

5 1" 3% Tz 27p
oL seep)
-2 @ (2.6.5)

for which the function T is shown in Figure 2.2,3. The transform of q is

a(k,y) =

-3jKL JKL
STOLE (e + e - 2) JO(Y (o)) (2.6.6)
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The potential Y at any point (z,r) now can be expressed in terms
of an integral,
(2.6.7)
—JkL JKL
e -2 j
Y(z,r) = JOCYP)eJkZJ (yr)y dy dk
(47)%6 KL o

Y2+—:)

For impedance calculation, it is necessary to have the electric field in

the z direction at the dipole surface (r=0).

o0 o0
E (z,p) = o IKL KL 5 JkEp (yP) y dy dk (2.6.8)
(2m)? jwe_K'L LK °

a2

If the integration with respect to k is carried out as in Section 2.2,

Ez becomes

oe]

_ a —ay]z—Ll* —aylz+L|_ -ayiz] 7
E_(z,p) = % FL (e e 2 e J?)(y p)dy (2.6.9)

The following integral relation can be used tosimplify the calculations:
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0 /2
R ypay=2 d¢ (2.6.10)
2
v s ’\le + (2Pcos®)
Now Ez can be expressed as
m/2
5P = T T 7 - + -
© JaZ(L-z)2+(chos¢»2 daz(L+z)2+(2pcos¢»2
- 2 d¢ (2.6.11)

4 a2z2+(2pcos¢))2

The expression inside the integral sign now has the same form as Equation
(2.2.19). Integration with respect to ¢ can be delayed while the impedance
calculations are carried out as in Section 2.3,

The impedance of a monopole is given by

Z
2, = (1- £) E, (p,2) dz, (2.6.12)
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If the integration with respect to z is carried out and if the assumption

is made that (2Pcos@)? << ( IaiL)z, the following formula may be written

by analogy with Equation (2,3.25):

/2
1 2 L
= Joawe KL 7 ZPeosd 2+ 1 d (2.6.1
Zin jo2T€ KL 7 [1“ 2pcosd » *In a:] ¢ (2.6.13)
O
However,
/2
- In(2pcosd) d@ = 1n p (2.6.14)
o]
Thus,
1 L
in = jw2TE K'L E“ p-l+1in a:] (2.6.15)

which is identical to Equation (2.3.25), It may be concluded that the
assumption of a filamentary current (in Section 2.2) introduces negligible

error in the impedance calculation,

2.7 The Effect of a Smooth Current Assumption on the Computed Impedance

The field solution for a triangular current distribution contains

infinite discontinuities along the characteristic cones emanating from the

1
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ends and center of the dipole (see Equation (2,2,19))., The discontinuities
in the field are closely related to the current discontinuities at the
source, In the following calculations, the current distribution chosen
is filamentary but has a continuous first derivative at the ends and
center of the dipole,

For simplicity, both the dipole and the DC magnetic field are oriented
in the z direction. If J and q represent the corresponding current and

charge distributions, it is assumed that

Zz Z3
for z>0 J = 6(x) 6(y) [:- 3 — +2 — (2.7.1)
1.2 i
-8 5 () -z
q = ) 27D z (1 L) (2.7.2)
2 3
for z < 0 J=6(x) 8(y) |1 -3% -2% (2.7.3)
12 13
6 b () z
q = 200 z (1 + -I: ) (2.7.4)

Jor?

The transforms to be used are
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© 00
~ . _~jkz
f(y,k) = tp,z) e Jo(y P) p dp dz (2.7.5)
-0 0
o0 00

. 1 ; Jkz

f(}),z) = of (Y’k) e JO(W) vy dy dk (2.7.6)
-0 O
The transform of the charge distribution is
o} L

q = —5 z (1+ %) e 9 4, ol za- %) e TIk% 4y (2.7.7)

jwgai?

After combining the two integrals and integrating by parts, one obtains a

~
convenient form of q :

ik -Jjk
Jku + e Jku

a - 31;-) (e ) du (2.7.8)

The electric field parallel to the dipole can be obtained by a
transform solution of the quasi-static differential equation, The method

is identical to the one employed for the previous field computations for

a triangular current distribution., The inverse transformation is carried out

as follows:

33
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o0 o0 )
E (0,2) = —3 k q jkz
z™’ oME K* ff K © Jo('Y P) y dy dk 2.7.9)
° =0 0 'YZ + ‘a-z‘
w0 (2.7.10)
E_(p,2) = S R— (1- 24 Jk(zrw+  Jk(z-u)
jwom? € K 12 L J ye)y dy dk du
-0 6

o (2.7.11)
. -3a '
. =38 I . _) -aylzwl ~ayjz-u|
jwzﬂeoxt L2 f f + € Jo(Yp) Y d'Y du
(2.7.12)
L
_ -3a 2u, | 1
= —92 1- 24 1
Fw2me K' L2 f ( L) > + du
o 4 ¢\Jp + a2 (z+u)2 \lp2 + a2 (z-u)?
_ -3 (1+ _23_) sinh-‘l a(l+z) 2z "l a(L-z) -1
JwZFf—K_'LZ ‘ 1 —5  * (1- =) sinh 5 - 4z sirh
o}
2 2 2 ’
S O A A - UL LR B - - AN | CR AR T
212 L 22 L T

OIR

" em o G5 A =B S Ny e Ey e
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Note that the expression for Ez has no infinite discontinuities,

If the input current is unity and the antenna surface is designated

by S, the input impedance is given by

z = - J - E ds (2.7.14)
in
S
After the transformations Z% = t and % =M, the impedance integral for a
monopole becomes
1
-1 -
3 2 3 . 1+M . 1-M
= — - = 1- nh —=—=
z, juﬂﬂeoK'L (1-3n“+ 21°) [}1+2ﬂ)51nh s (1-2M)si T
o

- ,
- 4M sinh ’% - 2(412+(1+n)2 +,lt2+ (1-m)2 -th2+ n? ):I dn  (2.7.15)

The integral has been evaluated exactly but the final answer is quite

involved. To simplify the expression, it is assumed that lp/al? << 1.2,

[
&,

Under this assumption the impedance is given by
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1,2 aL
= PSS Mo, -2 - 7
i Jemme ®L (M p MO (2.7.16)

For a triangular current distribution the corresponding monopole impedance

expression as derived previously is

_ - (1o 2L _, (2.7.17)

The two impedance expressions are identical in form and only slightly
different in magnitude,.

The [Ezl at the ground plane of a monopole is plotted in the
accompanying graph (Figure 2.7.1). The field of the smoothed current
distribution has no infinite discontinuity but instead it has a dis-
continuous slope, Despite the difference in field magnitudes, the im-
pedance expressions are nearly identical,

Given the field calculations for the triangular current, it would be
tempting to conclude that the real part of the input impedance arises
from some sort of energy storage in the vicinity of the characteristic
cones along which the electric field becomes infinite, In fact, such a

6 in his work on the biconical

conslusion has been reached by Kaiser
dipole, However the smooth current assumption produces a finite field

intensity yet gives an impedance expression almost identical to the one
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Figure 2.7.1 Electric field discontinuities for two current distributions
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derived under the triangular current assumption, Thus the occurrence of
field infinities is not necessary for the appearance 6f a real part in
the input impedance, This conclusion clearly lends support to the

radiation argument put forward in Section 2.4,
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3. VALIDITY OF TEE THFORETICAL MODEL

3.1 A firsi-Order Correction 1o the Quas:-Static Theory

It has beer zhown (Equation (2.1.39)) “rat the total electric
field may be approximated at low frequencies by the quasi-static electric

field plus a correction term:

- 1_ N koz oN _ “[ .
F . 2| 2. 2 1. .2 N ¥ 1.1
E - 5 = S s . .J ! (3.1.1}
o)
— = k 2 - =
= 2 Bk d o o2 (bpex T oy 3 (3.1.2)
5 k - Kk a kK KKk 1
in which
a - éz ;‘ K k
o = K'2-K"2) (2 =2 k) & K K k2w K oo 2 K2 )
b 2 301 3

The total low freguency electric field (Egquation (3,1.2)) may be represented

) i ) L A . | B
as the zum of ~hre guasi-static field E and rhe correction term E . Thus

9
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E:EA-FEB (3.1.3)
Using parallel notation, the low frequency input impedance may be
represented by
A
z =2 "4z B (3.1.4)
in in in
From Equation (3.1.2), the expression for E is
~ —pr' T = ~
B b k o J =
= o [RER ' J i N3 (3.1.5)
a K+ Kk 1

The case to be considered in detail is that of finding the electric
field Ez parallel to a current filament Jz' The z direction is considered
in order to keep the computations as simple as possible, The electric

field can be expressed as follows:
(3.1.6)

A CY E('Z—K"z)(k2+ k) + KK (K4 K2+ 2 K )]k2 :
E L2 R i=3 , g (k:+k§+2kz)

k- Kk

100
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The expression can be simplified by a transformation to cylindrical
coordinates:
2 2 2

k = cosP kK" + k" =

y Y ? 1 2 ¥

k2 =y sinP , k% = yg +-k§_ (3.1.7)
Thus the electric field expression becomes

2 n2 2
R Y + i 73 (3.1.8)
z (K'Yz + K k2 ) (yz + kz)(K'yz K kz)
) 3 o3
For a triangular current distribution, Sz is given by
L
k L ~jk L . .
5 2 - e ’ -€ ! 3 u Jk u -k u
J = = a-2=) e 3 +e du  (3.1.9)
z L
K L
3 o)
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The electric field in space may be found by taking the Fourier transform
of Equation (3.1.8). For convenience k is written in place of ks.
00 o
~ k
E’: = —2X EI: e Jk2 J_(yP) y dy dk (3.1.10)
(2m)?
© 0
- Wy K! 2 K" 2
= B e I' ©,2) + (¢ 1" (P, 2) (3.1.11)
(2m)? 0 o
where
o0 o0 I,

jku

u eJ + e_‘jku jkz
I' 0,z) = K - o V%3 (y¢) y® du dy dk  (3.1.12)
o] (K.Y2+ Kok2 )2 o}

-0 O O

and

(3.1.13)

r - ku jku
2 = K
IH (p’z) - 1(20 (1~ _E) k . e + € “ eJ ZJO(YP)YadU d,Y dk
K+ V2 (K K+ K'9)
Y o Y
00 0 [6)
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Introducing the anisotropy factor a = K'/Ko’ one may write the above

two integrals as follows:

Jk(z+u) Jk(z-y)
res = [ a-d J () ¥ dk dy du  (3.1.14)
(2 + a?y?)?

Jk(z+u) jk(z u) s
1I"@,z)=§ Q- —) J_ (y) ¥ dk dy du (3.1.15)
f 1<2+y2 a? + a? y ) ©

Integration with respect to k Yusing contour integration) gives

(3.1.16)

0
I'p,z) = —'3— f (1- %)f +ay(z+u aY(HU)-i- 1+aylz-uﬂ e-ay]z-ul Jo(yp)dydu
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L
2 - 2 _ ~
" (P, 2z)= o (1- %) 1 a%l + ay(zsw)| e ay(z+u)+ a1 +aylZ-u| e aylz ul
a?-1 2a | |a%+1 L
o o]

- _%_— oYW - -ylz-ul J_(yp) dy du (3.1.17)
a?-1

Rearranging the terms gives

(3.1.18)
L 0
T u 1 9 -ay(z+u)  -ay|z-ul
I'(P,2) = —z—f (1- f) f it Y + e Jo(yp) dy du
2a
o o]
L o
2 9 - - -
I"(0,z) = ] (1- _E)f a®+1 - 31 4e ay(z+u)+e ay|z-ul
2(a%-1) a(a®-1)
O O
- ;2 e_\((z+u)+ e-y!z-u! JO(Yp) d'Y du (3.1.19)
a®~1
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After integration with respect toy,
(3.1,20)
L
T 1 o u 1
'p,z) = — (< - 5) 1- =) L
’ 22 & D8 f LN+ & @ru)? N P+ e-w)?
o
- 2
" m L 9 1
I' P,2) = . f (1- -:-) '%:L)- - B + !
2(a”-1) / a@ ~1) Vp2+a2 (z+u)? sz-kﬁz (z-u)?
- : 1 ¥ --—3—-—-_-} du (3.1.21)
a -1 r\ll)z-k(uu)2 l\lpz-rr(mﬂ-v.a)2
B
Recall that Ez(p,z) is given by
B - "
E (P,z) = L% | p (P,z) + bt I (p,zil (3.1.22)
z 2
(21)
where
2 K 2 K
a K and b® = K
o] [¢]
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The corresponding contribution to the impedance of a short monopole is
L
B Z B (
= - Pt 3.1,23)
Zin ¢! I ) Ez p,z) dz
0
L L
. 1 : 1
ESC TN a-3 | a-d + du dz
4 ’ Jp2+a2 (z+u)? Alp2+a2 (z-u)
L
z u 1 1
-C 1- E) (1- 'ﬁ) , + du dz (3.1.24)
3
4p2+(z+u)2 /\lpz(z-u)2
0 o
4 . 2 4 4
b 2b
where C = a+ b” (a7+1) , C = a? + , C = =
1 a(a’-1)? 2 a?-1 3 (a?-1)2

Note that the integrands are symmetric in u and z, Thus the impedance may

be expressed as
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1 1

L z

= (c -C %—) (1- 9 a- 5

in (2')2 1 g2 Ya L L ,\12
&) o P +a

L

+ du dz
2 (z+u)? ;\Jpz-!-az (z-u)?

1

du dz {|(3.1.25)

o] o]

Integration with respect to u gives

47

. -1 -1 -1
B Jop 9 1 z . 2az , 2az . az)
= el - — — - L inh —_— 4+ Z[|sinh == _ 2 h —
Zin (c1 C, %) oo a- s D D sin

z
z u 1
- ¢ Iu- I’f‘l' 3 +
. Jp2+(z+u)2 AJp“’al-(z-u)2

L

- -1 -1
1 z . 2z , 2z . z 9 9 2
- o = - - L h -— +; inh — - 2 1h—+2J +z¢ =~ +4z°-pldz
Cs qu L) sin D z(s o sin p) P Jpz ;ﬂ

(o]
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0
Now one can integrate with respect to z, take the derivative Ba and

make the approximation L >>l§l. Thus,

C - C
B _ JuL| 3 (1 aL - 11 —2--1-ln5-li+ln2--l-l-c .1.1512-1_1.
Zin T o4m | a \3 1n P +1n 2 18 " a2 \3 P 18/ 3\3 n P +inf-1g

—”

C C C C (o
_a‘_we_L(_x 2 o[, L 11) L. a\ima, 1[5 _
= S = + 2 C3 3 1ln 5 + 1n2 15 + Y + = 3 3 . (3.1.27)

With the help of the relation K"? = (XK' -Ko) (K'~1), it may be shown that

Cc (K'-l)(K’+KO) C

L t .
L1 4 , _1=1+KK'1,C=?%‘-3{-1-1 , (3.1.28)
a K' (K'éKo) a? 8 o)
from which
c c c 1 c c K -1
L, 2.¢c =2 SL-c==, L2 =21+ . (3.1.29)
a’ 2 3 ’ a 3 K'”’ a 2 ~ K'-KO
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Now the monopole impedance correction can be expressed as
z?n=%‘?—1‘ -;-1n-pl-‘-+1nz-i—87-+ 1+§::!1(0 1;a+ 611{, . (3.1.30)
The quasi-static calculation gave
D S— [En Lo 14 n 5] (3.1.31)
in P

27 jwe _LK'

Combining these,

A
Z =2 -L-ZB
in in in
2
1 1 1 2 (L 1 L
m m—m o —— = - 1 - T =} 1= = -
2 T JE L) © En 14+ nE] (2? XEilnP .251

' - 1 1
o (L4 ;ﬁ, = | 5 6K'_—J (3.1.32)
o]

where N is the free-space wavelength,
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When K’, a, Ko are of the order of unity the 1n % terms dominate,

Under these conditions, the quasi-static expression is accurate as long as

m)2 [L\2
ngl— (X) << 1. 1In other words, if L = .1\, a correction of about 10%

would be expected.

However at cyclotron resonance K' and "a" become very large, increasing
the magnitude of Z?n compared to Z?n. Thus the quasi-static theory breaks
down at cyclotron resonance unless the magnitudes of K' and "a" are kept low
by collisional damping. As an example, consider the experimental monopole
for which L = .04\ at 1.6 kmc. At Y?= 1 (cyclotron resonance), X = 1 and
Z = ,05, the magnitude of the correction term is 20% of the quasi-static
impedance magnitude.

It is important to notice that the form of Z?n is almost identical to
that of Zgn’ showing that the correction term does not introduce any

markedly different kind of impedance behaviour,

3.2 The Effect of Plasma Waves on Impedance

A given current distribution in a uniform, isotropic plasma generates
both transverse electromagneti¢ waves and longitudinal plasma waves, Coupling
between the two wave types occurs only in the presence of inhomogeneity or
anisotropy and such coupling will not be considered here, The problem to be
considered is that of a short, thin, cylindrical dipole with a triangular
current distribution as shown in Figure 3,2,1. Since the electromagnetic and
plasma fields are generated independently by a given current distribution
(see Cohen,lspart 1), their impedance contributions may be computed separately

and added,
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Figure 3.2.1 The source distribution
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The electromagnetic problem has many well-known solutions but the
plasma wave problem has received little attention, Hessel and Shmoys19
have discussed the field problems of an infinitesimal dipole and a current
distribution on a sphere, Whale? has calculated the radiation resistance
of a short dipole and compared his calculations with the results of rocket
experiments, Cohen!® has discussed source problems in warm plasmas and
has included a calculation of dipole radiation resistance, In the following
paragraphs an impedance formula is derived for a cylindrical dipole; the
formula is valid for a lossy medium and for any electron density.

The required differential equation can be obtained easily from the
Jot

paper by Cohen!® (Part I)., If a time variation e is assumed and if a

collision frequency v is introduced, Cohen's force Equation (2.6) becomes

jo Nm U v = - Ne E - m V2
3 Nw vfotal eE .1 m VY n (3.2.1)

T
where V = XE— = plasma wave velocity

= 3

Boltzmann constant

H R <
Il

= electron temperature

electron mass (3.2.2)

=
Il

N = average electron density
n = variation in electron density
e = magnitude of electron charge

U=1-42=1-j2

<|
1]

electron velocity,
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Cohen's field equations can be derived for a lossy medium using the above
force equation, Three of the lossy medium equations (equivalent to Cohen's
Equations (3.10), (3.12) and (3.21) together with the continuity equation can
be used to derive a differential equation for the plasma wave electric field

E due to a source current J.

PEL X E. —2 L gy

ol

(3.2.3)

where
2
A=
o
wa
X = —
?
w2 o N
N mé€
o
X
Ko—l-ﬁ

In order to carry out field and impedance calculations it is necessary
Tto assume some current distribution 3, At SOOOK, plasma waves have a very
short wavelength (about one centimeter at ten megacycles). Since'the wave-
length may be comparable to a typical antenna radius, it is necessary to
assume a cylindrical current distribution rather than a filamentary distri-

bution, For a z-directed current cylinder of radius P, the differential
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equation for Ez is

1 -K g

_ a2 _ o 1 Z 6(I‘-p)
v E, -o" E =% JooE > 270 (3.2.4)

where

The longitudinal current distribution Jz is assumed to be triangular, The
second derivative of a triangular current distribution is equivalent to
the sum of three delta functions as shown in Figure 3.2.1.

The differential equation now can be expressed as

1-K
1 S (r-
¥ E - a’E = 2 . 5(z-L) + 0(z+L) - 26(z) S(x-p) (3.2.5)
z z K 27Tp
o Jw€ L
O
The above equation can be solved using the transform pair
o0 o0
~ -jkz
f(y,k) = ff f(r,z) e Jo(yr) dr dz (3.2.6)
-0 0 ‘
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o0 00
1 ~ jkz
f(r.z) = P f (y,k) e Jo(yr) y dy dk (3.2.7)
0 o
Transfofmation of the differential equation gives
\\
1-K . . J (y pP)
2 2 2, = o O -jkL JKL 0 ,
(k° + y° 4+ a*) E € KL [% + € 2 o7 (3.2.8)
2 0
Now Ez can be expressed as an inverse transform.
(3.2.9)
0 00
K -1 [ JKL KL 2:,
E (rz) = . =g - (v eIKZ 5 ,(yr)y dy dk
- jwE ,
z Jut KL (2m)? .I. + a?
=0 0

If it is assumed that4 yg+ a? always has a positive real part, integration

with respect to k gives

(3.2.10)
K -1 © - 'f-w.z lz-L] -|y?+a? (z2+L) 'nl\(z-!-dz z
N o € te -2€ :
E (r,z)= Joan€ K L Jo(yp) Jo(yr)y dy
) f' a2
0O . -
//
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If one's interest is confined to impedance, one need calculate the field

only at the antenna surface, that is at r = P. With the substitution

/2

2
Ji (o) = % J_(2yP cos@) a8, (3.2.11)

the field expression becomes

M2 v4allz-L] -[y?4a? (z4L) -|y*+alz
+e -2e

Ko-l e
EZ (p, Z) = __——_Jwﬂl'e XL * -
O O
ﬁ‘ o}
O o] lY2+

LS

J_(2y PcosB) y dy do (3.2.12)

If it is assumed that a always has a positive real part, the integration with

respect to y can be carried out (it is a form of "Sommerfeld's integral'),

K -1 2 m2 e-ﬂA(Z-L)2+(chose‘)2 e—’J(z+L)2+ (2Pcos0)?

- = +
n' .

,\](z-L)2+(zpcose)2 4(z+L)2+ (2Pcos0)?

— 22+(2pcose)2
-2 A do  (3.2.13)

z* 4 (2pcosB)?

116




111

Integration with respect to 6 will be delayed in order to simplify the
impedance calculation,

The dipole impedance contribution due to the longitudinal plasma
oscillations is twice the monopole impedance contribution. The latter

may be expressed as

In order to express the impedance in terms of simple functions, use is made

of the approximation 2>> pz, Integration with respect to z gives
K -1 u/2

P o) 2 1 ~-0L -2aL =2aPcosH
2, = mmm—e——— o = - | 4de -€ ~3e

in Jw2meE KL 7 2aL

29 0
o}
+ KO(Zapcose) - 2E1 (aL) + E1 (2aL) de (3.2.14)

where E1 is one of the exponential integrals;

du, (3.2.15)
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In the derivation of Equation (3.2.14) the following integral expression

for the function Ko has been used:

8

du, (3.2.16)

Here it should be mentioned that the assumption of a current filament
instead of a current cylinder would give the above impedance expression
with the exceptions that there would be no © integration and that 2 cos®
would be replaced by unity,.

Integration with respect to 6 tives

P Ko-m-l

Zin = WO—KO_L IO(G.p) Ko(o.p) - 2E1 (al) + E1 (2G.L)

b = | ge Ol _¢ 2L -31_(200) + 3L0(2apﬂ (3.2.17)

where L0 is a modified Struve function., In practical cases aL is quite
large but af may be fairly small, When a0 is small the term containing
Ko(ap) is dominant and it approaches infinity as aQ approaches zero, The
large argument approximationsfor IO and Ko are still useful when the

argument is near unity and they give the very simple approximate result
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K -1
P 0 1
Z — —— —_— .2.18
in jw2®€ K L 2P @3 )
o o
Combining this with the quasi-static analysis gives
(K -1)

1 L o)
Z = em—— - -1 —_— 3.2.19
in ~ ju2#€ K L In 5 ¥ 2ap ( )

From the above impedance formula, it is clear that plasma waves
affect the impedance of a short monopole appreciably when upo is approxi-
5
mately equal to unity., Taking T = BOOOK, we find that V = 1,168 x 10" m/sec.

In a lossless plasma

(3.2.20)

<it

Q:N_A_ = X-1

To take an example, apo

1]

1,07 when X = 1,25, f = 4 Mc. and po = 1 cm,
Since these parameter values are representative for the maximum electron
density in the F region of the ionosphere, it is clear that plasma
oscillations cannot be ignored in impedance probe studies using rockets or
satellites, 1In the laboratory experiment, however, the corresponding value
of ap would be of the order of 20. Thus 1t is unlikely that plasma

.

oscillations would have a measurable effect on the impedance of the experi-

mental monopole,
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The above impedance formulation is quite general but is most convenient
when the frequency is lower than the plasma frequency, that is when a 1s
real (in the lossless case), For frequencies above the plasma frequency,

a is imaginary so one can write jB in place of a, taking care to ensure that
a small loss in the medium gives jB a positive real part. Now the input

impedance contribution due to plasma oscillations can be written as

K -1 n/2
z P 0 .2 1 de -JBL —e -j2BL _3e -jzﬁpcosé}
in J'wzfreOKOL T J2pL
0

s
-3 [%o(zﬁpcose) + J JO(ZBPCOSS{]
-2 I:Ci(BL)+ Jsi(pL)] + EJi(ZBL) +Jsi(2(3Lﬂ o (3.2.21)

Where the following formulas have been used:

o0
u‘-q u® ~-q
| q q

(3.2.22)

[~ o]
Ci(ap) = 3"—5%3 du 51 (aP) =f _s—l% du
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Integration with respect to @ gives

0 ¥ :
“m = JomeRL |2 E’O@P’NO@P’ * 3 %@Pﬂ "2 Ei@“ * 351@‘8

+E:i(zf31.) + 3 si(2{3La + J;ﬁL Ee-JﬁL _e IBL g J_(28p) + 33 r_io(zﬁpzl (3.2.23)

where Eo is aStruve function,
For the case of a lossless medium, it 1s helpful *o break up the

impedance into its real and imaginary parts.

P l.Ko T
Re Zin = W'—GOKO—L 2 Ji Bp) + 2 siBL) ~ s51(2PBL)

+ E%E [Ecos BL~-cos2pL-3 Jo(prE] | (3.2.24)

-T . .
o= -“?'-E—OEF 3 I, 6P N_@p) - 2C1(@L) + C1(2pL)

+ ez—éi [-4 sinBL + sin2BL + 3 go(zppa} (3.2.25)

It should be noted that Re 21: is the radiation resistance associated

with the radiation of plasma waves from the antenna.
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In most cases of interest (B3P is fairly small while BL is quite large,
making the terms containing Jz (BP) and J0 (BP) dominant in the above two
formulas., If 80 is no smaller than unity, the Bessel functions can be

replaced by their large argument approximations. Thus

1-K
L ) l-cos2 BpP
Re zin T w2m€ K L 2BP (3.2.26)
o o
1-K
P _ (o) cos2 PBpP
Im Zin = wzﬂéoKoL ‘ 2BP (3.2.27)

Combining the above with the quasi-static impedance, one obtains the

approximate formula

K -
1 L 0 1

Zin = EGEEEEREE 1n 5" 14+ 26 cos2 BP -j(l-cos2 ﬂpz] (3.2.28)

The preceding discussion of impedance is based on the assumption of a
triangular current distribution on an antenna which is short compared to a
free space wavelength. This assumption may break down, however, at the
plasma frequency under near-lossless conditions. Furthermore, at high

frequencies Landau damping may affect the impedance,
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3.3 The Effect of a Non-Uniform Electron Density

The introduction of some surface or boundary into a plasma results
in the diffusive flow of the charged particles toward the surface. Close
to the surface, free diffusion predominates and an ion sheath forms,
Farther away, ambipolar diffusion predominates; the electron and ion densities
are nearly equal but both decrease as the point of observation approaches
the surface, Since the theory in this report assumes a uniform medium
with no space charge, experimental verification of the theory must depend
on minimizing diffusion and on understanding its effect on antenna impedance.
The effect of non-uniform electron density on impedance can be estimated
by calculating the impedance per unit area between two parallel conducting
plates separated by unit distance, The space between the plates contains
isotropic plasma having an electron density distribution as shown in

Figure 3.3.1, The input impedance per unit area is given by

1
1 1
Z = —— = dy (3.3.1)
in wao Ko(y)
o
1
= jié L dy wvhere U = 1 -~ jZ
o 1- X(y)
o) U
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U-aX
= v 2 ‘3 1n ____O + i (3 3 2)
jw€ | (1-a) X U- X U-X e
o} o o} o

The results of some numerical calculations using Equation (3.3.2)
are shown in Figures 3.3.2 and 3,3.3. The impedances are normalized to
give a free space reactance of 5 ohms. An examination of all the curves
(especially curve E) reveals that the losses in the plasma are increased
considerably whenever some part of the medium is in plasma resonance,
Note that curves C and F are nearly identical despite the ratio of two
between their respective collision frequencies; apparently under such
circumstances the electron density distribution has a greater influence
on energy loss than the collision frequency. Furthermore it is evident
that the effects on non-uniformity cannot be calculated from a density
distribution made up of finite "steps™; only a continuous distribution
will give the enhanced energy loss discussed above,

Curve E of Figure 3_.3.3 exhibits an indentation for 1<X6< 2. The
similarity of this indentation to the kinks in the theoretical curves of
Section 4.2 (at low values of Yz) suggests that it may be difficult in
practice to distinguish between the effects of non-uniformity and the
effects of anisotropy. However, it is estimated that the conditions of
curve F may be closer to the experimental conditions than those of curve E,
This conclusion arises from the estimate that in the vicinity of the R,F,
probe the average electron density is about four times the minimum density

(see Section 4,1). Thus the ratio of maximum to minimum electron density
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may be as high as eight, Under such conditions the impedance curve would
have a very gradual indentation and would be similar to curve F, A further
point is this; the experimentally observed kinks first appear for Yza,.so.
For .50 2> Y2> .10 the experimental curves are fairly smooth, For .10 >.Y2;,0
some indentation was observed and presumably it was caused by non-uniformity.
It is therefore suggested that non-uniformity in the experimental results

of Section 4.2 is more likely to move the entire impedance locus toward

the real axis than to cause local distortions which may be confused with
anisotropic effects,

The ion sheath over a conducting surface is a type of non-uniformity
which can be expanded or collapsed by the application of bias with respect
to a reference electrode, When the sheath is collapsed, the plasma is
essentially uniform in the region adjacent to the surface. Bias controls
the sheath thickness by influencing the state of equilibrium between the
electron and ion currents flowing to the surface. Consequently the surface
under consideration (and also the reference electrode) must not be covered
with an insulating layer, Since a state of sheath collapse is easy to
achieve, it is not necessary to discuss the theory of sheath formation
further in this report,

In a decaying, inactive laboratory plasma, the electron density
distribution at time t is a function of the deionization processes for all

, the time when the discharge was initiated).

time before tl (going back to t
o

The two principal deionization processes are volume recombination and

diffusion to surfaces. Recombination, being a volume process, tends to make

the electron density uniform but diffusion has the opposite tendency. The
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Figure 3.3.3 The impedance of a non-uniform, isotropic plasma between
parallel plates as a function of peak electrondensity,
Collision parameter: Z=.05
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may be as high as eight, Under such conditions the impedance curve would
have a very gradual indentation and would be similar to curve F, A further
point is this; the experimentally observed kinks first appear for Yza..50.
For .50 > Y2> .10 the experimental curves are fairly smooth, For .10 >.Y2;.0
some indentation was observed and presumably it was caused by non-uniformity.
It is therefore suggested that non-uniformity in the experimental results

of Section 4.2 is more likely to move the entire impedance locus toward

the real axis than to cause local distortions which may be confused with
anisotropic effects,

The ion sheath over a conducting surface is a type of non-uniformity
which can be expanded or collapsed by the application of bias with respect
to a reference electrode, When the sheath is collapsed, the plasma is
essentially uniform in the region adjacent to the surface. Bias controls
the sheath thickness by influencing the state of equilibrium between the
electron and ion currents flowing to the surface, Consequently the surface
under consideration (and also the reference electrode) must not be covered
with an insulating layer, Since a state of sheath collapse is easy to
achieve, it is not necessary to discuss the theory of sheath formation
further in this report,

In a decaying, inactive laboratory plasma, the electron density
distribution at time t is a function of the deionization processes for all

the time when the discharge was initiated).

time before t1 (going back to to’

The two principal deionization processes are volume recombination and
diffusion to surfaces., Recombination, being a volume process, tends to make

the electron density uniform but diffusion has the opposite tendency. The
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experimental plasma (see Chapter 4) 1s 1nitiated at tO by a 2Us DC pulse,
In the first 50 to 100Us., diffusion 1s dominant due to the high electron
temperature, There follows a period of dominant recombination resulting
from the existence of high electron and ion densities, As these densities
decrease, diffusion again takes over, From the foregoing discussion it is
clear that the electron density distribution around the experimental antenna
will be a very complicated function of all the events in the plasma between
to and t1L

Measurement of the electron density distribution is difficult because
any probe system disturbs the plasma around it. Because of such difficulties
in measurement the best approach to the non-uniformity problem is to try
to minimize diffusion. Tkis can be accomplished by choosing a gas with a
high recombination coefficient and a low diffusion coefficient (such as
neon)ﬂ and by using 1t at as high a pressure as possible. Although the
choice of gas 1s 1mporrant, the introduction of a magnetic field parallel
to the diffusing surface 1s probably the best way to reduce diffusion,
provided that the experiment can be carried out in the presence of the

magnetic field.
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4, LABORATORY MEASUREMENT OF MONOPOLE IMPEDANCE

4,1 Experimental Apparatus and Measurement Technique

The apparatus is designed to produce a pulsed DC discharge in neon
or helium at a pressure of 1 to 10 mm, Hg, The experiments are carried
out during the plasma decay period (afterglow) following each discharge

pulse. The "resonance probe'"??

method is used to measure electron density
and slotted-line techniques are used to measure the impedance of the
monopole RF probe immersed in the plasma,

Figure 4,1,1 is a schematic drawing of the vacuum system, Pump-down

2

procedure consists of pumping first to about 20 microns (2 x 10 2mm) with

the mechanical pump and then pumping to about 108

mm with the diffusion
pump, This procedure may take from a few hours to a few days depeﬁding on
the amount of contamination in the system, The application of a spark
coil to the glass parts of the system speeds up the outgassing of %he
glass surfaces, Pump-down is followed by sealing of the system and back-
filling with the required pressure of neon or helium, Operation of the
discharge for a few hours completes the decontamination of the discharge
tube interior, After the pump-down and back-fill procedures have been
carried out again, the equipment is ready for impedance measurement
experiments.

Figure 4.,1.2 is a diagram of the pulse and RF system used in the experi-
ment, The continuous discharge at the cathode end of the discharge tube
assures dependable starting of the pulsed high-voltage discharge. The 2Us.

discharge pulse is followed by the plasma decay which lasts for several
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milliseconds., In this experiment the first one or two milliseconds of
the decay are displayed on the oscilloscope,

Figures 4.1.3 and 4,1.4 show the details of the discharge tube and
RF probe assembly. The coaxial line up to the RF probe is designed to
minimize reflections, Both the RF probe (monopole antenna) and a flush
probe (not shown but mounted flush with the surface of the brass end
cap adjacent to the RF probe) are used as resonance probes to measure
electron density, The electron density given by the monopole resonance
probe measurement is an average density for the immediate viecinity of
the monopole; the electron density given by the flush resonance probe
has a much lower value and indicates the degree of plasma non-uniformity
resulting from diffusion to the brass end cap. In a typical experiment
the electron density adjacent to the end cap was found to be one-quarter
the average electron density along the RF probe,

The method of impedance measurement is illustrated in Figure 4.1.5,
The slotted line probe is positioned at four points spaced % wavelength
along the line., At each position a photograph of probe voltage vs. time
is taken, Measurements taken from the photographs are used to plot the
impedance as indicated, This method is usually referred to as the "four
probe' method and is discussed in detail in the book by Ginzton®l (page 310).

A typical set of probe voltage photographs is shown in Figure 4.1.6a

and Figure 4.1.6b, The experimental conditions are as follows:
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Figure 4.,1.6a
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Slotted line voltage as a function of
time, (Neon at 4.3 mm. pressure. Time
scale: 320 ps/cm,)
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%
Gas: Neon

*
Pressure: 4.3 mm, Hg.
Frequency: 1.6 Gc,
Bias: 18 volts

Oscilloscope horizontal scale:

Oscilloscope vertical scale: 2

133

*
3204s,/cm,

mv,./cm,

Probe dimensions: L = 8.0 mm., L/Pp = 12,0

The corresponding impedance loci are shown in
charge pulse 1in each photograph is at a point
side of the photograph. In the first 200 Us,

traces are irregular; thus the impedance loci

Figure 4,2,5, The dig-
one centimeter from the left
after the discharge pulse the

of Figure4,2,5begin approxi-

mately 250Ms, after the discharge pulse, A photograph of resonance probe

current at zero magnetic field (Y2 = 0) is included in Figure 4.1,6b,

It is important to estimate the leak rate of the vacuum system in

order to determine the optimum period for experimentation. At a pressure

of 2 to 10 mm, small changes in pressure cannot be measured accurately with

the equipment of Figure 4,1,1, Thus it is necessary to measure the low

pressure leak rate with the ionization gauge and assume that the leak rate

is not appreciably different at a pressure of a few millimeters,

is a graph of pressure vs, time as measured using the ionization gauge. As

shown on the graph, there is a period of about one hour after pump down during

which leakage contamination is negligible,

*
Only these conditions are varied in the experiments,
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4.2 Comparison of Experimental and Theoretical Impedance

The monopole impedance measurements to be described were carried
o
out in neon and helium gases., Some properties of these gases (at 300 K,

1 mm pressure) are summarized in the following table (CGS units):

Gas Electron-molecule Recombination Ambipolar
Collision probability coefficient Diffusion
Coefficient
P a D
c a
-7
Neon 3.3 2,1 x10 115
. -8
Helium 19 1.7 x 10 540

2

The values of a and Da are as given by Goldstein®?? and the values of P

C

are as given by Brown%s The table indicates that neon is preferable to

helium because neon has a lower diffusion coefficient and a higher recombi=-
nation coefficient. This means that a neon afterglow has a greater tendency
to decay by recombination instead of diffusion. Since recombination is a
volume process and diffusion a surface process, afterglow decay by recombi-
natioﬁ tends to produce a uniform plasma. In addition, neon's lower value
of Pc indicates that it may be used at higher pressure (for the same
collision frequency) thus reducing contamination problems.

In some of the experiments a mixture of neon plus 0,5% argon is used,

At SOOOK the argon contributes negligibly to the collision frequency.
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However the electron-molecule collision probability of argon rises sharply
at higher temperatures (the Ramsauer effect). Thus the argon tends to
increase the cooling rate for the electrons in the first 50 to 100Hs after
the discharge pulse, The presence of the argon should reduce the tendency
of neon metastable excited states to maintain the electron temperature
o)

above 300 K,

The time required for the attainment of electron thermal equilibrium

24 For

is of major importance and has been studied by Dougal and Goldstein,
neon and helium at pressures between .5 and 5 mm,, this time constant te

is given by the following formulas:

150
Neon: te\< -5 90 Us. for p = 5 mm, tes 120 Us.
Hel i . < §.L£.1. f ']. t <
elium: te.\ B + 26 Us. or p = |mm, N 36 Ms.

Thus it should be possible to begin impedance measurements after the time te.
The theoretical calculations require an estimate of the collision fre-
quency Vv which is given by the sum of the electron-molecule collision fre-

quency and the electron-ion collision frequency. That is,
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. . . v
Slmllarly, the relative collision parameter Z = " is given by

The appropriate collision frequencies are as follows (as given by Dougal

and Goldstei

em

and discussed by Pfister?®):

4 —
== v P p (MKS units)
3 c o
3/2
3.62 x 105 N 3.30 x 10° T
- o 1 1n e
ei T 3/2 1/2
e ) N,
1
8k T
_ e
M Tm

= average velocity of electrons with Maxwellian distribution

= Z%E P = pressure reduced to 0°c

= ion density

For a fixed frequency of 1,6 Gec,, the electron-ion collision parameter

may be approximated by the following simple function of X, the electron

density parameter:

Z = .,010X
ei
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The electron-molecule collision parameter values are summarized in the

following table:

Z
Gas Pressure em
Neon 2.3 mm, .010
Neon 4.3 mm, 019
Neon 10,3 mm, . 044
Helium 2.2 mm, ,055

The theoretical and experimental results are shown as Smith chart
impedance graphs in Figures 4.2.1 to 4.2,12. The theoretical graphs
indicate that an increasing magnetic field sweeps the impedance locus
from the top of the Smith chart nearly to the bottom., This effect 1s
reduced by increasing the pressure, Increased pressure also tends to
move the locl to *he right.

A prominent feature of each theoretical locus is the presence of a
“kink” in the vicinity of X = 1 (plasma resonance) This kink arises from
the logarithm in the impedance formula and is thus related to the elliptic/
hyperbolic feature of the quasi-static theory. The point X = 1 is always
on the boundary between an ellipitic and a hyperbolic region (see Figure
2.1.1). Increasing the pressure tends to smooth out the kinks in the

impedance loci, In addition, the point X = 1 1s seen to follow a nearly
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cir;ular path as the DC magnetic field changes,

It should be noted that the line X + Y* = 1 is also an elliptic-
hyperbolic boundary for X <1, <1 (Refer to Figure 2.1.,1), The points
X=1 - Yz'are not marked on the theoretical impedance loci but they are
close to the real axis for small values of Y> and are all capacitive, The
Smith chart graphs reveal no unusual behaviour at X =1 =~ Y2°

In general there is good qualitati?e agreement between experiment and
theory. The movement of the impedance loci from the top of the Smith
chart to the bottom with increasing magnetic field is evident in every
experiment., Movement of the loci to the right and toward the real axis
with increasing collision frequency also is evident, In all cases
(theoretical and experimentai) the cyclotron resonance locus (Y2 = 1) meets
the rim of the Smith chart at right angles,

In each experiment, the points X = 1 follow an approximately circular
path, Since these points were determined at zero magentic field and since
an increasing magnetic field tends to increase the time required for after-
glow decay, the points X = 1 are in error for 2> 0. Furthermore the
magni tude of the error increases as Y2 increases, Thus the true plasma
resonance points are somewhat to the right of the indicated points and
the necessary correction increases with increasing magnetic field,

In Section 3,3 it was found that a non-uniform electron density tends
to move the impedance locus for ¥ =0 away from the rim of the Smith
chart and toward the real axis, Such an effect is evident in every experi-
mental Smith chart at low values of Y2 Agreement with the theory is some-

what better at high values of Yz, presumably because the magnetic field
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tends to reduce diffusion to the probe surface (transverse diffusion), A
reduction in diffusion renders the plasma more uniform and uniformity is
assumed in the theory,

The kinks at X = 1 are visible in many of the experimental loci,

At high magnetic fields, the kinks are to the right of the plasma
resonance points obtained at zero magnetic field, As discussed above,
this is probably caused by the extended decay period of a plasma in a
magnetic field, The theory predicts a smoothing out of the kinks as gas
pressure is increased and this effect is noticeable 1f Figure 4.2,2 is
compared with Figure 4.2.5. However, a non-uniform plasma density also
would tend to smooth out the kinks and the degree of uniformity depends
on the plasma decay processes which in turn are pressure-dependent, Thus
it is very difficult to identify the cause of a smoothing effect in the
impedance loci when the gas pressure is changed,

The addition of a small quantity of Argon (to increase the rate at
which the electrons approach thermal equilibrium) apparently has little
effect. This can be seen by comparing Figure 4.2.3 with Figure 4,2.2 and
Figure 4,2,6 with Figure 4.2.5,

In contrast to the case of argon, the addition of a very small
amount of air has a pronounced effect on the impedance loci (see Figures
4.2.7 and 4.2.8), The effect of the addition of air is to bring the
experimental results into much closer agreement with the theory, expecially
in the regions of the plasma resonance kinks, The air percentages indicated
on the graphs are rough approximations obtained by extrapolating the

leakage graph of Figure 4,1.7 to 5 hours (DOS% air at 4.3 mm) and to
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25 hours(.ls% air at 4.3 mm), It is suggested that the addition of air
tends to cause the predominance of volume processes (recombination,
attachment) in the afterglow decay, This should produce a more uniform
plasma and hence better agreement between theory and experiment, The
argument for additional decay processes is supported by the fact that the
addition of air shortens the overall decay period by a factor ranging
from 1/5 to 1/10, Most of this shortening is in the early part of the
afterglow when the electron density is high., Since the recombination decay
rate is proportional to the square of electron density, the early after-
glow shortening is a further argument for the addition of volume decay
processes,

The impedance loci for helium (Figure 4.,2.12) exhibit no kinks at
all. In contrast the experiment in neon at 10,3 mm (Figure 4.2.10)
displays kinks which are definite although considerably smoothed in
comparison with the theory (Figure 4.2.9). The two cases compared have
similar collision frequencies as is shown in the collision frequency table
given earlier in this section, This tends to confirm the earlier assertion

that neon is preferable to helium in an experiment of this type,
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5. CONCLUSIONS

A formulation for electromagnetic theory 1n a magnetoplasma is
obtained. This formulation is in terms of a scalar potential and a vector
potential, A ﬁodified Coulomb gauge condition is selected, the choice
being made so that the quasi-static electric field is displayed as a
distinct part of the total electric field., The total electric field is
expanded in such a manner as to facilitate making a low frequency approxi-
mation (the expansion is similar to the expansions used by Mittra and

Deschampsl and also Kogelnikze)c

In the low frequency approximation, it
is shown that only the quasi-static electric field remains. Furthermore
in the low frequency approximation, part of the magnetic field is shown to
arise from currents induced in the magnetoplasma by the quasi-static
electric field, This induced magnetic field is not present in isotropic
media,

The quasi-static electric field of a short dipole antenna is calculated
and in the lossless case the field i1s found to contain conical discontinuities
emanating from the ends and center of the dipole, These discontinuities occur
only when the quasi-static differential equation is hyperbolic and they lie
along members of the family of characteristic surfaces of the differential
equation,

The quasi-static electric field is used to obtain an expression for the
input impedance of the dipole for any orientation with respect to the DC
magnetic field, Under lossless, hyperbolic conditions it is found that the
input impedance has a positive real part, Integration of the Poynting vector

over a surface surrounding the dipole indicates that real outward power flow
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is present and that it arises from the induced magnetic field mentioned
above, It is concluded that the quasi~static theory predicts a form of
radiation from a short dipole in a magnetoplasma.

The results summarized above are based on the assumption that the
current distribution is triangular and that a filamentary current is an
adequate representation of the dipole current for electric field calcu-
lations, The influence of this assumption is estimated by carrying out
impedance calculations for two different current distributions. The
first distribution is triangular but the current is assumed to be spread
over the cylindrical surface of the dipole, The second distribution is
filamentary and such that the slope of the current is zero.at the-ends
of the dipole and at the center, These two assumed currents give
impedances which are essentially identical to the impedance as originally
derived,

The quasi-static differential equation can be reduced to Poisson's
equation by a simple dimensional scaling, It is shown that a cylindrical
dipole in a magnetoplasma has a free space equivalent with a different
length and a distorted cross section. Furthermore, it is shown that the
scaling principie can be used to derive the dipole impedance formula.

A first order correction to the quasi-static impedance theory is
computed, The correction is found to be small in many cases of interest,
including the laboratory experiment used to test the theory.

The generation of longitudinal plasma waves is considered but only for
the isotropic case, Plasma waves are found to affect impedance appreciably

only in the vicinity of plasma resonance, In the laboratory plasma, the
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collision frequency 1s high enough to mask completely any impedance
effect due to plasma wave generation,

The effect of a non-uniform electron density is considered by calcu-
lating the impedance of a non-uniform, isotropic plasma between parallel
plane electrodes, Non-uniformity is found to have little effect as long
as no part of the plasma is in a state of plasma resonance., If some
region is in resonance, the effect on impedance is similar to the effect
of increasing the collision frequency.

A series of experiments is described in which impedance measurements
are made on a cylindrical probe immersed in a pulsed, decaying plasma, A
DC magnetic field permeates the plasma and is parallel to the dipole
axis, The electron density in the vicinity of the probe is measured using
the "Resonance Probe” technique, Good qualitative agreement between
measured and theoretical impedance is obtained., Quantitative agreement is
only fair, probably because the plasma is quite non-uniform, In some of
the experiments, a small amount of air was allowed to mix with the neon
(neon was used in almost all of the experiments)., Addition of the air
resulted in greatly improved agreement between theory and experiment, It
is suggested that the presence of air enhanced volume deéay processes in

the discharge afterglow and thus prpduced a more uniform plasma,
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APPENDIX
THE MODIFIED COULOMB GAUGE CONDITION
The gauge condition used in Section 2.1 is
7 .KA=0 (A.1)

This will be referred to as the modified Coulomb gauge condition because of

its similarity to the Coulomb gauge condition

Y .A=0 (A.2)

which is mentioned in various texts.

In general, a particular gauge condition is chosen in order to simplify
some aspect of electromagnetic theory. It is necessary to show that the
choice of gauge condition has no effect on the field solution for E and H
and that it is always possible to find potentials which satisfy the gauge
condition. Suppose that A and ¥ are potentials which satisfy Maxwell's

equations through the relations

E = -V¥ - juA ' (A.3)

MH=VzxA (A.4)

It is assumed that no restriction (such as a gauge condition) has been applied

to A and ¥, It is known that Maxwell's equations are invariant under a gauge
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transformation of the type
A=A+ W8 (A.5)
]
¥ oo W- G (A.6)

? 1
in which A , ¥ are the new potentials and P is the gauge function. If it
is required that the new potentials satisfy the modified Coulomb gauge

condition, Equation (A.1l) becomes

V.KvB=-v.KA (A.7)

Equation (A.7) has the same form as the quasi-static equation for the scalar
potential and solutions for this equation may be obtained easily. Thus a
gauge function B can always be found such that the gauge condition is
satisfied. Furthermore the invariance of Maxwell's equations under a gauge
transformation assures that the field solutions are unaffected by the choice

of gauge condition.
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